BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1932 related articles for article (PubMed ID: 18555785)

  • 1. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells.
    Chen X; Xu H; Yuan P; Fang F; Huss M; Vega VB; Wong E; Orlov YL; Zhang W; Jiang J; Loh YH; Yeo HC; Yeo ZX; Narang V; Govindarajan KR; Leong B; Shahab A; Ruan Y; Bourque G; Sung WK; Clarke ND; Wei CL; Ng HH
    Cell; 2008 Jun; 133(6):1106-17. PubMed ID: 18555785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells.
    Kidder BL; Yang J; Palmer S
    PLoS One; 2008; 3(12):e3932. PubMed ID: 19079543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells.
    Ouyang Z; Zhou Q; Wong WH
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21521-6. PubMed ID: 19995984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.
    Ho L; Jothi R; Ronan JL; Cui K; Zhao K; Crabtree GR
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5187-91. PubMed ID: 19279218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell.
    Orlov Y; Xu H; Afonnikov D; Lim B; Heng JC; Yuan P; Chen M; Yan J; Clarke N; Orlova N; Huss M; Gunbin K; Podkolodnyy N; Ng HH
    J Integr Bioinform; 2012 Sep; 9(2):211. PubMed ID: 22987856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET.
    Mathur D; Danford TW; Boyer LA; Young RA; Gifford DK; Jaenisch R
    Genome Biol; 2008; 9(8):R126. PubMed ID: 18700969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells.
    Liu X; Huang J; Chen T; Wang Y; Xin S; Li J; Pei G; Kang J
    Cell Res; 2008 Dec; 18(12):1177-89. PubMed ID: 19030024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulatory networks in embryonic stem cells.
    Chen X; Vega VB; Ng HH
    Cold Spring Harb Symp Quant Biol; 2008; 73():203-9. PubMed ID: 19022762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of transcriptional circuitries in human embryonic stem cells reveals multiple and independent networks.
    Wang X; Guda C
    Biomed Res Int; 2014; 2014():725780. PubMed ID: 24511543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.
    Hutchins AP; Choo SH; Mistri TK; Rahmani M; Woon CT; Ng CK; Jauch R; Robson P
    Stem Cells; 2013 Feb; 31(2):269-81. PubMed ID: 23169531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells.
    Mason MJ; Fan G; Plath K; Zhou Q; Horvath S
    BMC Genomics; 2009 Jul; 10():327. PubMed ID: 19619308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network.
    Ang YS; Tsai SY; Lee DF; Monk J; Su J; Ratnakumar K; Ding J; Ge Y; Darr H; Chang B; Wang J; Rendl M; Bernstein E; Schaniel C; Lemischka IR
    Cell; 2011 Apr; 145(2):183-97. PubMed ID: 21477851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myc and max genome-wide binding sites analysis links the Myc regulatory network with the polycomb and the core pluripotency networks in mouse embryonic stem cells.
    Krepelova A; Neri F; Maldotti M; Rapelli S; Oliviero S
    PLoS One; 2014; 9(2):e88933. PubMed ID: 24586446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Oct4-centered protein interaction network in embryonic stem cells.
    van den Berg DLC; Snoek T; Mullin NP; Yates A; Bezstarosti K; Demmers J; Chambers I; Poot RA
    Cell Stem Cell; 2010 Apr; 6(4):369-381. PubMed ID: 20362541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-regulation in embryonic stem cells via context-dependent binding of transcription factors.
    Lee Y; Zhou Q
    Bioinformatics; 2013 Sep; 29(17):2162-8. PubMed ID: 23793746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones.
    Gokhman D; Livyatan I; Sailaja BS; Melcer S; Meshorer E
    Nat Struct Mol Biol; 2013 Jan; 20(1):119-26. PubMed ID: 23222641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extended transcriptional network for pluripotency of embryonic stem cells.
    Kim J; Chu J; Shen X; Wang J; Orkin SH
    Cell; 2008 Mar; 132(6):1049-61. PubMed ID: 18358816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 97.