BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18555992)

  • 1. Two distinct processes are evident in rat cone flicker ERG responses at low and high temporal frequencies.
    Qian H; Shah MR; Alexander KR; Ripps H
    Exp Eye Res; 2008 Jul; 87(1):71-5. PubMed ID: 18555992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonic analysis of the cone flicker ERG of rabbit.
    Qian H; Alexander KR; Ripps H
    Exp Eye Res; 2010 Dec; 91(6):811-7. PubMed ID: 20974130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Macaque photopic sinusoidal flicker ERG.
    Viswanathan S; Frishman LJ; Robson JG
    Doc Ophthalmol; 2002 Sep; 105(2):223-42. PubMed ID: 12462445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of period doubling in the rat cone flicker ERG.
    Shah MR; Alexander KR; Ripps H; Qian H
    Exp Eye Res; 2010 Feb; 90(2):196-202. PubMed ID: 19840785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological analysis of the rat cone electroretinogram.
    Xu L; Ball SL; Alexander KR; Peachey NS
    Vis Neurosci; 2003; 20(3):297-306. PubMed ID: 14570251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The d-wave of the rod electroretinogram of rat originates in the cone pathway.
    Naarendorp F; Williams GE
    Vis Neurosci; 1999; 16(1):91-105. PubMed ID: 10022481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal pathway origins of the pattern ERG of the mouse.
    Miura G; Wang MH; Ivers KM; Frishman LJ
    Exp Eye Res; 2009 Jun; 89(1):49-62. PubMed ID: 19250935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness.
    Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA
    J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet- and short-wavelength cone contributions alter the early components of the ERG of young zebrafish.
    Bilotta J; Trace SE; Vukmanic EV; Risner ML
    Int J Dev Neurosci; 2005 Feb; 23(1):15-25. PubMed ID: 15730883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses.
    Hare WA; Ton H
    Doc Ophthalmol; 2002 Sep; 105(2):189-222. PubMed ID: 12462444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner retinal contributions to the primate photopic fast flicker electroretinogram.
    Bush RA; Sieving PA
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):557-65. PubMed ID: 8627412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of murine models of "negative ERG" by single and repetitive light stimuli.
    Tanimoto N; Akula JD; Fulton AB; Weber BH; Seeliger MW
    Doc Ophthalmol; 2016 Apr; 132(2):101-9. PubMed ID: 26996188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is there an omitted stimulus response in the human cone flicker electroretinogram?
    McAnany JJ; Alexander KR
    Vis Neurosci; 2009; 26(2):189-94. PubMed ID: 19272196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation phase of cone phototransduction and the flicker electroretinogram in retinitis pigmentosa.
    Alexander KR; Rajagopalan AS; Raghuram A; Fishman GA
    Vision Res; 2006 Sep; 46(17):2773-85. PubMed ID: 16494917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.
    Lei B
    PLoS One; 2012; 7(8):e43856. PubMed ID: 22937111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Bipolar Cells of Cone ON and OFF Pathways to Electroretinograms Elicited by Ultraviolet and Middle Wavelength Stimuli.
    Kawashima R; Matsushita K; Kuniyoshi K; Nishida K
    Curr Eye Res; 2019 Apr; 44(4):413-422. PubMed ID: 30444431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postreceptoral contributions to the light-adapted ERG of mice lacking b-waves.
    Shirato S; Maeda H; Miura G; Frishman LJ
    Exp Eye Res; 2008 Jun; 86(6):914-28. PubMed ID: 18440505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poststimulus response characteristics of the human cone flicker electroretinogram.
    Gowrisankaran S; McAnany JJ; Alexander KR
    Vis Neurosci; 2013 Jul; 30(4):147-52. PubMed ID: 24016531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.