These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18556003)

  • 1. Predicting dynamic postural instability using center of mass time-to-contact information.
    Hasson CJ; Van Emmerik RE; Caldwell GE
    J Biomech; 2008 Jul; 41(10):2121-9. PubMed ID: 18556003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling of plantarflexor muscle activity and postural time-to-contact in response to upper-body perturbations in young and older adults.
    Hasson CJ; Caldwell GE; Van Emmerik RE
    Exp Brain Res; 2009 Jul; 196(3):413-27. PubMed ID: 19504089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of time-to-contact measures for assessing postural stability.
    Haddad JM; Gagnon JL; Hasson CJ; Van Emmerik RE; Hamill J
    J Appl Biomech; 2006 May; 22(2):155-61. PubMed ID: 16871006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the quick onset of stepping following postural perturbation.
    Do MC; Schneider C; Chong RK
    J Biomech; 1999 Aug; 32(8):795-802. PubMed ID: 10433421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults.
    Pai YC; Rogers MW; Patton J; Cain TD; Hanke TA
    J Biomech; 1998 Dec; 31(12):1111-8. PubMed ID: 9882043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting time-to-contact calculations during quiet standing.
    DiDomenico A; McGorry RW; Banks JJ
    Motor Control; 2015 Jan; 19(1):1-9. PubMed ID: 24718897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the dynamic margins of stability for use in evaluations of balance following a support-surface perturbation.
    Inkol KA; Vallis LA
    J Biomech; 2019 Oct; 95():109302. PubMed ID: 31481246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.
    Chvatal SA; Torres-Oviedo G; Safavynia SA; Ting LH
    J Neurophysiol; 2011 Aug; 106(2):999-1015. PubMed ID: 21653725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Between-day reliability of time-to-contact measures used to assess postural stability.
    Wheat JS; Haddad JM; Scaife R
    Gait Posture; 2012 Feb; 35(2):345-7. PubMed ID: 22088850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling margin of stability with feet in place following a postural perturbation: Effect of altered anthropometric models for estimated extrapolated centre of mass.
    Inkol KA; Huntley AH; Vallis LA
    Gait Posture; 2018 May; 62():434-439. PubMed ID: 29653405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age associated differences in postural equilibrium control: a comparison between EQscore and minimum time to contact (TTC(min)).
    Forth KE; Metter EJ; Paloski WH
    Gait Posture; 2007 Jan; 25(1):56-62. PubMed ID: 16464595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the relationship between stability and variability of the centre of mass and centre of pressure.
    Rajachandrakumar R; Mann J; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2018 Jun; 63():254-259. PubMed ID: 29778979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of postural response after a self-initiated perturbation.
    Termoz N; Martin L; Prince F
    Motor Control; 2004 Jan; 8(1):51-63. PubMed ID: 14973337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of balance prediction models for sit-to-stand movement in the sagittal plane.
    Pena Cabra OD; Watanabe T
    Comput Math Methods Med; 2013; 2013():592328. PubMed ID: 24187580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting reactive stepping in response to perturbations by using a classification approach.
    Emmens AR; F van Asseldonk EH; Prinsen V; der Kooij HV
    J Neuroeng Rehabil; 2020 Jul; 17(1):84. PubMed ID: 32616066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity.
    Welch TD; Ting LH
    J Neurophysiol; 2009 Jun; 101(6):3294-309. PubMed ID: 19357335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepping boundary of external force-controlled perturbations of varying durations: Comparison of experimental data and model simulations.
    Robert T; Vallée P; Tisserand R; Buloup F; Bariatinsky D; Vercher JL; Fitzpatrick RC; Mille ML
    J Biomech; 2018 Jun; 75():89-95. PubMed ID: 29793765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does postural chain mobility influence muscular control in sitting ramp pushes?
    Le Bozec S; Bouisset S
    Exp Brain Res; 2004 Oct; 158(4):427-37. PubMed ID: 15197526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.