BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18556787)

  • 1. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases.
    Pereira MP; D'Elia MA; Troczynska J; Brown ED
    J Bacteriol; 2008 Aug; 190(16):5642-9. PubMed ID: 18556787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.
    Meredith TC; Swoboda JG; Walker S
    J Bacteriol; 2008 Apr; 190(8):3046-56. PubMed ID: 18281399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication.
    Qian Z; Yin Y; Zhang Y; Lu L; Li Y; Jiang Y
    BMC Genomics; 2006 Apr; 7():74. PubMed ID: 16595020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis.
    Li FKK; Gale RT; Petrotchenko EV; Borchers CH; Brown ED; Strynadka NCJ
    J Struct Biol; 2021 Jun; 213(2):107733. PubMed ID: 33819634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway.
    D'Elia MA; Pereira MP; Chung YS; Zhao W; Chau A; Kenney TJ; Sulavik MC; Black TA; Brown ED
    J Bacteriol; 2006 Jun; 188(12):4183-9. PubMed ID: 16740924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
    Bhavsar AP; Erdman LK; Schertzer JW; Brown ED
    J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus.
    Pereira MP; Brown ED
    Biochemistry; 2004 Sep; 43(37):11802-12. PubMed ID: 15362865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.
    Yokoyama K; Miyashita T; Araki Y; Ito E
    Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395.
    Winstel V; Sanchez-Carballo P; Holst O; Xia G; Peschel A
    mBio; 2014 Apr; 5(2):e00869. PubMed ID: 24713320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium.
    Chan YG; Frankel MB; Dengler V; Schneewind O; Missiakas D
    J Bacteriol; 2013 Oct; 195(20):4650-9. PubMed ID: 23935043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM analysis of
    Li FKK; Worrall LJ; Gale RT; Brown ED; Strynadka NCJ
    Sci Adv; 2024 Mar; 10(9):eadj3864. PubMed ID: 38416829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis.
    D'Elia MA; Millar KE; Bhavsar AP; Tomljenovic AM; Hutter B; Schaab C; Moreno-Hagelsieb G; Brown ED
    Chem Biol; 2009 May; 16(5):548-56. PubMed ID: 19477419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae.
    Baur S; Marles-Wright J; Buckenmaier S; Lewis RJ; Vollmer W
    J Bacteriol; 2009 Feb; 191(4):1200-10. PubMed ID: 19074383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways.
    Brown S; Meredith T; Swoboda J; Walker S
    Chem Biol; 2010 Oct; 17(10):1101-10. PubMed ID: 21035733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain.
    Vinogradov E; Sadovskaya I; Li J; Jabbouri S
    Carbohydr Res; 2006 May; 341(6):738-43. PubMed ID: 16458275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of the Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows
    Karinou E; Schuster CF; Pazos M; Vollmer W; Gründling A
    J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30322854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of synthesis of wall teichoic acid in phosphate-starved cultures of Bacillus subtilis W23.
    Cheah SC; Hussey H; Baddiley J
    Eur J Biochem; 1981 Sep; 118(3):497-500. PubMed ID: 6271552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Analysis of the Unusual Staphylococcus aureus ST630 Isolates Harboring WTA Glycosyltransferase Genes
    Xiong M; Chen L; Zhao J; Xiao X; Zhou J; Fang F; Li X; Pan Y; Li Y
    Microbiol Spectr; 2022 Feb; 10(1):e0150121. PubMed ID: 35170993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus.
    D'Elia MA; Henderson JA; Beveridge TJ; Heinrichs DE; Brown ED
    J Bacteriol; 2009 Jun; 191(12):4030-4. PubMed ID: 19376878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the linkage units between ribitol teichoic acids and peptidoglycan.
    Kojima N; Araki Y; Ito E
    J Bacteriol; 1985 Jan; 161(1):299-306. PubMed ID: 3918002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.