BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18556790)

  • 1. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus.
    DeBoy RT; Mongodin EF; Fouts DE; Tailford LE; Khouri H; Emerson JB; Mohamoud Y; Watkins K; Henrissat B; Gilbert HJ; Nelson KE
    J Bacteriol; 2008 Aug; 190(15):5455-63. PubMed ID: 18556790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation.
    Attia M; Stepper J; Davies GJ; Brumer H
    FEBS J; 2016 May; 283(9):1701-19. PubMed ID: 26929175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase.
    Attia MA; Brumer H
    Appl Environ Microbiol; 2021 Feb; 87(5):e0263420. PubMed ID: 33355108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases.
    Cartmell A; McKee LS; Peña MJ; Larsbrink J; Brumer H; Kaneko S; Ichinose H; Lewis RJ; Viksø-Nielsen A; Gilbert HJ; Marles-Wright J
    J Biol Chem; 2011 Apr; 286(17):15483-95. PubMed ID: 21339299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japonicus.
    Gardner JG; Keating DH
    Methods Enzymol; 2012; 510():331-47. PubMed ID: 22608735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T.
    Weiner RM; Taylor LE; Henrissat B; Hauser L; Land M; Coutinho PM; Rancurel C; Saunders EH; Longmire AG; Zhang H; Bayer EA; Gilbert HJ; Larimer F; Zhulin IB; Ekborg NA; Lamed R; Richardson PM; Borovok I; Hutcheson S
    PLoS Genet; 2008 May; 4(5):e1000087. PubMed ID: 18516288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trehalose Degradation by Cellvibrio japonicus Exhibits No Functional Redundancy and Is Solely Dependent on the Tre37A Enzyme.
    Garcia CA; Narrett JA; Gardner JG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides.
    Hutcheson SW; Zhang H; Suvorov M
    Mar Drugs; 2011; 9(4):645-665. PubMed ID: 21731555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
    Gardner JG
    World J Microbiol Biotechnol; 2016 Jul; 32(7):121. PubMed ID: 27263016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems analysis of the glycoside hydrolase family 18 enzymes from
    Monge EC; Tuveng TR; Vaaje-Kolstad G; Eijsink VGH; Gardner JG
    J Biol Chem; 2018 Mar; 293(10):3849-3859. PubMed ID: 29367339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus.
    Centeno MS; Goyal A; Prates JA; Ferreira LM; Gilbert HJ; Fontes CM
    FEMS Microbiol Lett; 2006 Dec; 265(1):26-34. PubMed ID: 17005007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus.
    Monge EC; Gardner JG
    Mol Microbiol; 2021 Aug; 116(2):366-380. PubMed ID: 33735458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.
    Nelson CE; Attia MA; Rogowski A; Morland C; Brumer H; Gardner JG
    Environ Microbiol; 2017 Dec; 19(12):5025-5039. PubMed ID: 29052930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Phenotype and Genome Analysis of
    Xie Z; Lin W; Luo J
    Biomed Res Int; 2017; 2017():6304248. PubMed ID: 28798934
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbe Profile:
    Gardner JG
    Microbiology (Reading); 2024 Apr; 170(3):. PubMed ID: 38568197
    [No Abstract]   [Full Text] [Related]  

  • 16. X4 modules represent a new family of carbohydrate-binding modules that display novel properties.
    Bolam DN; Xie H; Pell G; Hogg D; Galbraith G; Henrissat B; Gilbert HJ
    J Biol Chem; 2004 May; 279(22):22953-63. PubMed ID: 15004012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov.
    Christopherson MR; Suen G; Bramhacharya S; Jewell KA; Aylward FO; Mead D; Brumm PJ
    PLoS One; 2013; 8(1):e53954. PubMed ID: 23342046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions.
    Fontes CMGA; Gilbert HJ; Hazlewood GP; Clarke JH; Prates JAM; McKie VA; Nagy T; Fernandes TH; Ferreira LMA
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1959-1967. PubMed ID: 10931900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome sequence of Cellvibrio pealriver PR1, a xylanolytic and agarolytic bacterium isolated from freshwater.
    Xie Z; Lin W; Luo J
    J Biotechnol; 2015 Nov; 214():57-8. PubMed ID: 26253962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.