These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 185572)

  • 1. Absolute dependence of CCL4 induced loss of glucose-6-phosphatase and cytochrome P-450 on lipid peroxidation.
    Recknagel RO; Hruszkewycz AM; Glende EA
    Panminerva Med; 1976; 18(9-10):375-80. PubMed ID: 185572
    [No Abstract]   [Full Text] [Related]  

  • 2. On the mechanisms of the CCl4-induced inhibition of liver cytochrome P-450.
    Ferrali M; Comporti M
    Res Commun Chem Pathol Pharmacol; 1987 Jun; 56(3):375-86. PubMed ID: 3628967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposed mechanism for the destruction of cytochrome P450 during carbon tetrachloride metabolism.
    Cheong EH; Bidlack WR
    Proc West Pharmacol Soc; 1977; 20():97-102. PubMed ID: 896868
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of carbon tetrachloride on the liver of chickens. Early biochemical and ultrastructural alterations in the absence of detectable lipid peroxidation.
    Bernacchi AS; de Castro CR; de Toranzo EG; de Ferreyra EC; de Fenos OM; Castro JA
    Xenobiotica; 1987 Feb; 17(2):223-8. PubMed ID: 3031885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical role of lipid peroxidation in carbon tetrachloride-induced loss of aminopyrine demethylase, cytochrome P-450 and glucose 6-phosphatase.
    Glende EA; Hruszkewycz AM; Recknagel RO
    Biochem Pharmacol; 1976 Oct; 25(19):2163-70. PubMed ID: 9947
    [No Abstract]   [Full Text] [Related]  

  • 6. Increased carbon tetrachloride hepatotoxicity, and its mechanism, after chronic ethanol consumption.
    Hasumura Y; Teschke R; Lieber CS
    Gastroenterology; 1974 Mar; 66(3):415-22. PubMed ID: 4149842
    [No Abstract]   [Full Text] [Related]  

  • 7. Carbon tetrachloride-induced liver injury in the rabbit.
    Bernacchi AS; de Castro CR; de Ferreyra EC; Villarruel MC; Fernández G; de Fenos OM; Castro JA
    Br J Exp Pathol; 1983 Jun; 64(3):261-7. PubMed ID: 6309207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of covalent binding and lipid peroxidation in liver damage by carbon tetrachloride].
    Kostiuk VA
    Biokhimiia; 1991 Oct; 56(10):1878-85. PubMed ID: 1777525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon tetrachloride-induced loss of microsomal glucose 6-phosphatase and cytochrome P-450 in vitro.
    Masuda Y
    Jpn J Pharmacol; 1981 Feb; 31(1):107-16. PubMed ID: 6265675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon tetrachloride hepatotoxicity: an example of lethal cleavage.
    Rechnagel RO; Glende EA
    CRC Crit Rev Toxicol; 1973 Nov; 2(3):263-97. PubMed ID: 4357489
    [No Abstract]   [Full Text] [Related]  

  • 11. Reductive-oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450.
    Pohl LR; Schulick RD; Highet RJ; George JW
    Mol Pharmacol; 1984 Mar; 25(2):318-21. PubMed ID: 6700577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic microsomal metabolism of CCL4 after pretreatment with chlordecone, mirex, or phenobarbital in male rats.
    Klingensmith JS; Mehendale HM
    Drug Metab Dispos; 1983; 11(4):329-34. PubMed ID: 6193935
    [No Abstract]   [Full Text] [Related]  

  • 13. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products.
    Fernández G; Villarruel MC; de Toranzo EG; Castro JA
    Res Commun Chem Pathol Pharmacol; 1982 Feb; 35(2):283-90. PubMed ID: 7071415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the relatipnships between carbon tetrachloride-induced alterations of liver microsomal lipids and impairment of glucose-6-phosphatase activity.
    Benedetti A; Casini AF; Ferrali M; Comporti M
    Exp Mol Pathol; 1977 Dec; 27(3):309-23. PubMed ID: 200464
    [No Abstract]   [Full Text] [Related]  

  • 15. Prevention and treatment of carbon tetrachloride hepatotoxicity by cysteine: studies about its mechanism.
    De Ferreyra EC; Castro JA; Díaz Gómez MI; D'Acosta N; De Castro CR; De Fenos OM
    Toxicol Appl Pharmacol; 1974 Mar; 27(3):558-68. PubMed ID: 4137122
    [No Abstract]   [Full Text] [Related]  

  • 16. Pentane as an index of in vitro lipid peroxidation via microsomal NADPH-P-450 enzyme systems.
    Sato N; Fujii K; Yuge O; Morio M
    Hiroshima J Med Sci; 1989 Sep; 38(3):131-4. PubMed ID: 2584057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbonyl compounds (4-hydroxyalkenals) originating from the peroxidation of liver microsomal lipids on various microsomal enzyme activities of the liver.
    Ferrali M; Fulceri R; Benedetti A; Comporti M
    Res Commun Chem Pathol Pharmacol; 1980 Oct; 30(1):99-112. PubMed ID: 6254122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of carbon tetrachloride-induced lipid peroxidation in liver microsomes from dehydroepiandrosterone-pretreated rats.
    Aragno M; Tamagno E; Poli G; Boccuzzi G; Brignardello E; Danni O
    Free Radic Res; 1994; 21(6):427-35. PubMed ID: 7834057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings: P-450 carbene-complexes.
    Mansuy D; Ullrich V
    Z Klin Chem Klin Biochem; 1975 Aug; 13(8):376. PubMed ID: 1216970
    [No Abstract]   [Full Text] [Related]  

  • 20. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity.
    Harris RN; Anders MW
    Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.