These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18557395)

  • 1. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm.
    Kopyt P; Celuch M
    J Microw Power Electromagn Energy; 2007; 41(4):18-29. PubMed ID: 18557395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave modeling and validation in food thawing applications.
    Tilford T; Baginski E; Kelder J; Parrott K; Pericleous K
    J Microw Power Electromagn Energy; 2007; 41(4):30-45. PubMed ID: 18557396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High frequency electromagnetism, heat transfer and fluid flow coupling in ANSYS multiphysics.
    Sabliov CM; Salvi DA; Boldor D
    J Microw Power Electromagn Energy; 2007; 41(4):5-17. PubMed ID: 18557394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled simulation of an electromagnetic heating process using the finite difference time domain method.
    Chen H; Tang J; Liu F
    J Microw Power Electromagn Energy; 2007; 41(3):50-68. PubMed ID: 18351003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process.
    Muley PD; Boldor D
    J Microw Power Electromagn Energy; 2012; 46(3):139-62. PubMed ID: 24432470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of microwave, conventional and hybrid ovens using a new thermal modeling technique.
    Haala J; Wiesbeck W
    J Microw Power Electromagn Energy; 2000; 35(1):34-43. PubMed ID: 10834187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of the FDTD method relevant to the analysis of microwave power problems.
    Celuch M; Gwarek WK
    J Microw Power Electromagn Energy; 2007; 41(4):62-80. PubMed ID: 18557398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled electromagnetic and thermal modeling of microwave oven heating of foods.
    Zhang H; Datta AK
    J Microw Power Electromagn Energy; 2000; 35(2):71-85. PubMed ID: 10935193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.
    Patil NG; Rebrov EV; Eränen K; Benaskar F; Meuldijk J; Mikkola JP; Hessel V; Hulshof LA; Murzin DY; Schouten JC
    J Microw Power Electromagn Energy; 2012; 46(2):83-92. PubMed ID: 24427859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Computer modeling of electrodynamic processes in SHF-based water disinfection and heating system as part of the spacecrew life support system].
    Klimarev SI; Zaĭtsev KA
    Aviakosm Ekolog Med; 2012; 46(5):55-8. PubMed ID: 23405422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite difference thermal model of a cylindrical microwave heating applicator using locally conformal overlapping grids: part I--theoretical formulation.
    Al-Rizzo HM; Tranquilla JM; Feng M
    J Microw Power Electromagn Energy; 2005; 40(1):17-29. PubMed ID: 16673831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic and heat transfer computations for non-ionizing radiation dosimetry.
    Samaras T; Regli P; Kuster N
    Phys Med Biol; 2000 Aug; 45(8):2233-46. PubMed ID: 10958191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FDTD analysis of dielectric-loaded longitudinally slotted rectangular waveguides.
    Al-Rizzo HM; Younies HZ; Clark KG; Tranquilla JM
    J Microw Power Electromagn Energy; 2003; 38(3):171-87. PubMed ID: 15078065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the resistive sheet in finite element microwave heating systems.
    Ehlers RA; Metaxas AC
    J Microw Power Electromagn Energy; 2001; 36(2):77-87. PubMed ID: 15040526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling for RF and microwave heating using FE comes of age.
    Ehlers RA; Georghiou GE; Malan H; Metaxas AC
    J Microw Power Electromagn Energy; 2001; 36(4):241-50. PubMed ID: 15038559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave radiometry for continuous non-contact temperature measurements during microwave heating.
    Stephan KD; Pearce JA
    J Microw Power Electromagn Energy; 2005; 40(1):49-61. PubMed ID: 16673833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions.
    Horikoshi S; Sumi T; Serpone N
    J Microw Power Electromagn Energy; 2012; 46(4):215-28. PubMed ID: 24432589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migrating temperature "thermo-chromatographic" pulses (TCP) initiated by radio-frequency (RF) heating.
    Kraus M; Kopinke FD; Roland U
    J Microw Power Electromagn Energy; 2012; 46(4):241-52. PubMed ID: 24432591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated modeling of microwave food processing and comparison with experimental measurements.
    Akarapu R; Li BQ; Huo Y; Tang J; Liu F
    J Microw Power Electromagn Energy; 2004; 39(3-4):153-65. PubMed ID: 16480158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TLM simulation of microwave sintering of ceramics using SiC stimulus.
    Amri A; Saidane A
    J Microw Power Electromagn Energy; 2001; 36(2):89-100. PubMed ID: 15040527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.