BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18557823)

  • 1. A role for internal water molecules in proton affinity changes in the Schiff base and Asp85 for one-way proton transfer in bacteriorhodopsin.
    Morgan JE; Gennis RB; Maeda A
    Photochem Photobiol; 2008; 84(4):1038-45. PubMed ID: 18557823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M
    J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate.
    Maeda A; Gennis RB; Balashov SP; Ebrey TG
    Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base.
    Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK
    J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin.
    Kandori H
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):72-9. PubMed ID: 15282177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model.
    Tanimoto T; Furutani Y; Kandori H
    Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relocation of internal bound water in bacteriorhodopsin during the photoreaction of M at low temperatures: an FTIR study.
    Maeda A; Tomson FL; Gennis RB; Kandori H; Ebrey TG; Balashov SP
    Biochemistry; 2000 Aug; 39(33):10154-62. PubMed ID: 10956004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water molecules in the schiff base region of bacteriorhodopsin.
    Shibata M; Tanimoto T; Kandori H
    J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin.
    Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR
    Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy.
    Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A
    Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water as a cofactor in the unidirectional light-driven proton transfer steps in bacteriorhodopsin.
    Maeda A; Morgan JE; Gennis RB; Ebrey TG
    Photochem Photobiol; 2006; 82(6):1398-405. PubMed ID: 16634652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
    Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC
    J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues.
    Rousso I; Friedman N; Sheves M; Ottolenghi M
    Biochemistry; 1995 Sep; 34(37):12059-65. PubMed ID: 7547944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump.
    Luecke H
    Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water structural changes at the proton uptake site (the Thr46-Asp96 domain) in the L intermediate of bacteriorhodopsin.
    Yamazaki Y; Hatanaka M; Kandori H; Sasaki J; Karstens WF; Raap J; Lugtenburg J; Bizounok M; Herzfeld J; Needleman R
    Biochemistry; 1995 May; 34(21):7088-93. PubMed ID: 7766618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins.
    Druckmann S; Ottolenghi M; Rousso I; Friedman N; Sheves M
    Biochemistry; 1995 Sep; 34(37):12066-74. PubMed ID: 7547945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Arg82 in the early steps of the bacteriorhodopsin proton-pumping cycle.
    Clemens M; Phatak P; Cui Q; Bondar AN; Elstner M
    J Phys Chem B; 2011 Jun; 115(21):7129-35. PubMed ID: 21561116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle.
    Lanyi JK; Schobert B
    J Mol Biol; 2003 Apr; 328(2):439-50. PubMed ID: 12691752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.