These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
784 related articles for article (PubMed ID: 18557943)
1. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. Lee SH; Ka JO; Cho JC FEMS Microbiol Lett; 2008 Aug; 285(2):263-9. PubMed ID: 18557943 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic diversity of Acidobacteria in a former agricultural soil. Kielak A; Pijl AS; van Veen JA; Kowalchuk GA ISME J; 2009 Mar; 3(3):378-82. PubMed ID: 19020558 [TBL] [Abstract][Full Text] [Related]
3. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Martinez RJ; Mills HJ; Story S; Sobecky PA Environ Microbiol; 2006 Oct; 8(10):1783-96. PubMed ID: 16958759 [TBL] [Abstract][Full Text] [Related]
4. Isolation and identification of Gluconacetobacter azotocaptans from corn rhizosphere. Mehnaz S; Weselowski B; Lazarovits G Syst Appl Microbiol; 2006 Sep; 29(6):496-501. PubMed ID: 16410044 [TBL] [Abstract][Full Text] [Related]
5. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. Chim Chan O; Casper P; Sha LQ; Feng ZL; Fu Y; Yang XD; Ulrich A; Zou XM FEMS Microbiol Ecol; 2008 Jun; 64(3):449-58. PubMed ID: 18430004 [TBL] [Abstract][Full Text] [Related]
6. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Navarro-Noya YE; Jan-Roblero J; González-Chávez Mdel C; Hernández-Gama R; Hernández-Rodríguez C Antonie Van Leeuwenhoek; 2010 May; 97(4):335-49. PubMed ID: 20084459 [TBL] [Abstract][Full Text] [Related]
7. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. Chan OC; Yang X; Fu Y; Feng Z; Sha L; Casper P; Zou X FEMS Microbiol Ecol; 2006 Nov; 58(2):247-59. PubMed ID: 17064266 [TBL] [Abstract][Full Text] [Related]
8. Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils. da Rocha UN; van Elsas JD; van Overbeek LS J Microbiol Methods; 2010 Nov; 83(2):141-8. PubMed ID: 20801169 [TBL] [Abstract][Full Text] [Related]
9. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
10. Group-specific PCR primers for the phylum Acidobacteria designed based on the comparative analysis of 16S rRNA gene sequences. Lee SH; Cho JC J Microbiol Methods; 2011 Aug; 86(2):195-203. PubMed ID: 21600936 [TBL] [Abstract][Full Text] [Related]
11. Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem. Bharathkumar S; Paul D; Nair S J Basic Microbiol; 2008 Feb; 48(1):10-5. PubMed ID: 18247389 [TBL] [Abstract][Full Text] [Related]
12. Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, Mcmurdo Dry Valley, Antarctica. Shravage BV; Dayananda KM; Patole MS; Shouche YS Microbiol Res; 2007; 162(1):15-25. PubMed ID: 16517136 [TBL] [Abstract][Full Text] [Related]
13. Differences in the rhizosphere bacterial community of a transplastomic tobacco plant compared to its non-engineered counterpart. Brinkmann N; Tebbe CC Environ Biosafety Res; 2007; 6(1-2):113-9. PubMed ID: 17961485 [TBL] [Abstract][Full Text] [Related]
14. Bacterial diversity in the rhizosphere of Proteaceae species. Stafford WH; Baker GC; Brown SA; Burton SG; Cowan DA Environ Microbiol; 2005 Nov; 7(11):1755-68. PubMed ID: 16232290 [TBL] [Abstract][Full Text] [Related]
15. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Barns SM; Cain EC; Sommerville L; Kuske CR Appl Environ Microbiol; 2007 May; 73(9):3113-6. PubMed ID: 17337544 [TBL] [Abstract][Full Text] [Related]
16. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Soo RM; Wood SA; Grzymski JJ; McDonald IR; Cary SC Environ Microbiol; 2009 Mar; 11(3):715-28. PubMed ID: 19278453 [TBL] [Abstract][Full Text] [Related]
17. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. Teixeira LC; Peixoto RS; Cury JC; Sul WJ; Pellizari VH; Tiedje J; Rosado AS ISME J; 2010 Aug; 4(8):989-1001. PubMed ID: 20357834 [TBL] [Abstract][Full Text] [Related]
18. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Quan ZX; Rhee SK; Zuo JE; Yang Y; Bae JW; Park JR; Lee ST; Park YH Environ Microbiol; 2008 Nov; 10(11):3130-9. PubMed ID: 18479446 [TBL] [Abstract][Full Text] [Related]
19. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Macur RE; Wheeler JT; Burr MD; Inskeep WP Microbiol Res; 2007; 162(1):37-45. PubMed ID: 16814534 [TBL] [Abstract][Full Text] [Related]