These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 18558137)

  • 1. Homogeneous liquid-liquid extraction combined with gas chromatography-electron capture detector for the determination of three pesticide residues in soils.
    Wang X; Zhao X; Liu X; Li Y; Fu L; Hu J; Huang C
    Anal Chim Acta; 2008 Jul; 620(1-2):162-9. PubMed ID: 18558137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersive liquid-liquid microextraction combined with gas chromatography-electron capture detection for the determination of polychlorinated biphenyls in soils.
    Hu J; Fu L; Zhao X; Liu X; Wang H; Wang X; Dai L
    Anal Chim Acta; 2009 Apr; 640(1-2):100-5. PubMed ID: 19362627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersive liquid-liquid microextraction followed by gas chromatography-electron capture detection for determination of polychlorinated biphenyls in fish.
    Hu J; Li Y; Zhang W; Wang H; Huang C; Zhang M; Wang X
    J Sep Sci; 2009 Jun; 32(12):2103-8. PubMed ID: 19548213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of pressurized liquid extraction and solvent extraction for the simultaneous quantification of 14 pesticide residues in green tea using GC.
    Cho SK; Abd El-Aty AM; Choi JH; Jeong YM; Shin HC; Chang BJ; Lee C; Shim JH
    J Sep Sci; 2008 Jun; 31(10):1750-60. PubMed ID: 18481329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiresidue analysis of four pesticide residues in water dropwort (Oenanthe javanica) via pressurized liquid extraction, supercritical fluid extraction, and liquid-liquid extraction and gas chromatographic determination.
    Jeon HR; Abd El-Aty AM; Cho SK; Choi JH; Kim KY; Park RD; Shim JH
    J Sep Sci; 2007 Aug; 30(12):1953-63. PubMed ID: 17638354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a multiresidue method for the determination of multiclass pesticides in soil using GC.
    Park JH; Mamun MI; Choi JH; Abd El-Aty AM; Assayed ME; Choi WJ; Yoon KS; Han SS; Kim HK; Park BJ; Kim KS; Kim SD; Choi HG; Shim JH
    Biomed Chromatogr; 2010 Aug; 24(8):893-901. PubMed ID: 20039336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiresidue method for determination of 35 pesticides in virgin olive oil by using liquid-liquid extraction techniques coupled with solid-phase extraction clean up and gas chromatography with nitrogen phosphorus detection and electron capture detection.
    Amvrazi EG; Albanis TA
    J Agric Food Chem; 2006 Dec; 54(26):9642-51. PubMed ID: 17177482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous determination of pyrethroids from pesticide residues in porcine muscle and pasteurized milk using GC.
    Khay S; Abd El-Aty AM; Choi JH; Shin EH; Shin HC; Kim JS; Chang BJ; Lee CH; Shin SC; Jeong JY; Shim JH
    J Sep Sci; 2009 Jan; 32(2):244-51. PubMed ID: 19107766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiresidue method for the analysis of pesticide residues in polished rice (Oryza sativa L.) using accelerated solvent extraction and gas chromatography and confirmation by mass spectrometry.
    Cho SK; Abd El-Aty AM; Park YS; Choi JH; Khay S; Kang CA; Park BJ; Kim SJ; Shim JH
    Biomed Chromatogr; 2007 Jun; 21(6):602-9. PubMed ID: 17385804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiresidue determination of pesticides in soil by gas chromatography-mass spectrometry detection.
    Sánchez-Brunete C; Albero B; Tadeo JL
    J Agric Food Chem; 2004 Mar; 52(6):1445-51. PubMed ID: 15030194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection.
    Fattahi N; Assadi Y; Hosseini MR; Jahromi EZ
    J Chromatogr A; 2007 Jul; 1157(1-2):23-9. PubMed ID: 17512936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography-tandem mass spectrometry.
    Pizzutti IR; de Kok A; Hiemstra M; Wickert C; Prestes OD
    J Chromatogr A; 2009 May; 1216(21):4539-52. PubMed ID: 19375710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiresidue analysis of pesticides in soil by supercritical fluid extraction/gas chromatography with electron-capture detection and confirmation by gas chromatography-mass spectrometry.
    Rissato SR; Galhiane MS; Apon BM; Arruda MS
    J Agric Food Chem; 2005 Jan; 53(1):62-9. PubMed ID: 15631510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiresidue analysis of pesticides in soil by gas chromatography with nitrogen-phosphorus detection and gas chromatography mass spectrometry.
    Fenoll J; Hellín P; Marín C; Martínez CM; Flores P
    J Agric Food Chem; 2005 Oct; 53(20):7661-6. PubMed ID: 16190613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sonication extraction method for the analysis of pyrethroid, organophosphate, and organochlorine pesticides from sediment by gas chromatography with electron-capture detection.
    You J; Weston DP; Lydy MJ
    Arch Environ Contam Toxicol; 2004 Aug; 47(2):141-7. PubMed ID: 15386137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection.
    Xiong J; Hu B
    J Chromatogr A; 2008 Jun; 1193(1-2):7-18. PubMed ID: 18439612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples.
    Li Y; Wei G; Hu J; Liu X; Zhao X; Wang X
    Anal Chim Acta; 2008 May; 615(1):96-103. PubMed ID: 18440368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of dispersive liquid-liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples.
    Fu L; Liu X; Hu J; Zhao X; Wang H; Wang X
    Anal Chim Acta; 2009 Jan; 632(2):289-95. PubMed ID: 19110107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a multiresidue method for determination of 37 pesticides in soil using GC-NPD.
    Park JH; Mamun MI; Abd El-Aty AM; Na TW; Choi JH; Ghafar MW; Kim KS; Kim SD; Shim JH
    Biomed Chromatogr; 2011 Sep; 25(9):1003-9. PubMed ID: 21154886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water.
    Pinheiro Ade S; de Andrade JB
    Talanta; 2009 Oct; 79(5):1354-9. PubMed ID: 19635370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.