These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18558346)

  • 1. Bicompartmental device for dynamic cell coculture: design, realisation and preliminary results.
    Ciofani G; Migliore A; Raffa V; Menciassi A; Dario P
    J Biosci Bioeng; 2008 May; 105(5):536-44. PubMed ID: 18558346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the crosstalk between hepatocytes and endothelial cells using a novel multicompartmental bioreactor: a comparison between connected cultures and cocultures.
    Guzzardi MA; Vozzi F; Ahluwalia AD
    Tissue Eng Part A; 2009 Nov; 15(11):3635-44. PubMed ID: 19496676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic engineered high cell density three-dimensional neural cultures.
    Cullen DK; Vukasinovic J; Glezer A; Laplaca MC
    J Neural Eng; 2007 Jun; 4(2):159-72. PubMed ID: 17409489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments.
    Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y
    Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture.
    Wu MH; Huang SB; Cui Z; Cui Z; Lee GB
    Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic perifusion and imaging device for multi-parametric islet function assessment.
    Adewola AF; Lee D; Harvat T; Mohammed J; Eddington DT; Oberholzer J; Wang Y
    Biomed Microdevices; 2010 Jun; 12(3):409-17. PubMed ID: 20300858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems.
    Choi Y; Vukasinovic J; Glezer A; Allen MG
    Biomed Microdevices; 2008 Jun; 10(3):437-46. PubMed ID: 18214683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multifunctional bioreactor for three-dimensional cell (co)-culture.
    Lichtenberg A; Dumlu G; Walles T; Maringka M; Ringes-Lichtenberg S; Ruhparwar A; Mertsching H; Haverich A
    Biomaterials; 2005 Feb; 26(5):555-62. PubMed ID: 15276363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A; Yeh J; Eng G; Karp J; Kaji H; Borenstein J; Farokhzad OC; Langer R
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective control of liver and kidney cells migration during organotypic cocultures inside fibronectin-coated rectangular silicone microchannels.
    Leclerc E; Baudoin R; Corlu A; Griscom L; Luc Duval J; Legallais C
    Biomaterials; 2007 Apr; 28(10):1820-9. PubMed ID: 17178157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research.
    Minuth WW; Strehl R
    Biomed Mater; 2007 Jun; 2(2):R1-R11. PubMed ID: 18458434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.