These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18558381)

  • 1. A brief review of bone adaptation to unloading.
    Zhang P; Hamamura K; Yokota H
    Genomics Proteomics Bioinformatics; 2008 Mar; 6(1):4-7. PubMed ID: 18558381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hindlimb unloading: rodent analog for microgravity.
    Globus RK; Morey-Holton E
    J Appl Physiol (1985); 2016 May; 120(10):1196-206. PubMed ID: 26869711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated spaceflight produces a rapid and sustained loss of osteoprogenitors and an acute but transitory rise of osteoclast precursors in two genetic strains of mice.
    Shahnazari M; Kurimoto P; Boudignon BM; Orwoll BE; Bikle DD; Halloran BP
    Am J Physiol Endocrinol Metab; 2012 Dec; 303(11):E1354-62. PubMed ID: 23047986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Hind Limb Suspension and Cast Mediated Immobilization on Bone Strength Properties.
    Sanseverino MJ; Speacht TL; Donahue HJ; Lau AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1747-1750. PubMed ID: 30440733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The temporal response of bone to unloading.
    Globus RK; Bikle DD; Morey-Holton E
    Endocrinology; 1986 Feb; 118(2):733-42. PubMed ID: 3943489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space flight and the skeleton: lessons for the earthbound.
    Bikle DD; Halloran BP; Morey-Holton E
    Endocrinologist; 1997; 7(1):10-22. PubMed ID: 11540416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fifteen days of microgravity causes growth in calvaria of mice.
    Zhang B; Cory E; Bhattacharya R; Sah R; Hargens AR
    Bone; 2013 Oct; 56(2):290-5. PubMed ID: 23791778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spaceflight and hindlimb suspension disuse models in mice.
    Milstead JR; Simske SJ; Bateman TA
    Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats.
    Cunningham HC; West DWD; Baehr LM; Tarke FD; Baar K; Bodine SC; Christiansen BA
    BMC Musculoskelet Disord; 2018 Jul; 19(1):223. PubMed ID: 30021585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space flight: a challenge for normal bone homeostasis.
    Carmeliet G; Vico L; Bouillon R
    Crit Rev Eukaryot Gene Expr; 2001; 11(1-3):131-44. PubMed ID: 11693958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats.
    Basso N; Jia Y; Bellows CG; Heersche JN
    Bone; 2005 Sep; 37(3):370-8. PubMed ID: 16005699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of gravitational changes on the bone system in vitro and in vivo.
    Vico L; Lafage-Proust MH; Alexandre C
    Bone; 1998 May; 22(5 Suppl):95S-100S. PubMed ID: 9600761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of microgravity on morphology and gene expression of osteoblasts in vitro.
    Carmeliet G; Bouillon R
    FASEB J; 1999; 13 Suppl():S129-34. PubMed ID: 10352154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces associated with launch into space do not impact bone fracture healing.
    Childress P; Brinker A; Gong CS; Harris J; Olivos DJ; Rytlewski JD; Scofield DC; Choi SY; Shirazi-Fard Y; McKinley TO; Chu TG; Conley CL; Chakraborty N; Hammamieh R; Kacena MA
    Life Sci Space Res (Amst); 2018 Feb; 16():52-62. PubMed ID: 29475520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protracted systemic changes in bone biology after segmented unloading in the rat.
    Egrise D; Holy X; Hinsenkamp M; Begot L; Schoutens A; Bergmann P; Zerath E
    Calcif Tissue Int; 2003 Jul; 73(1):56-65. PubMed ID: 14506955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of skeletal unloading on bone formation.
    Bikle DD; Sakata T; Halloran BP
    Gravit Space Biol Bull; 2003 Jun; 16(2):45-54. PubMed ID: 12959131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rat hindlimb unloading by tail suspension reduces osteoblast differentiation, induces IL-6 secretion, and increases bone resorption in ex vivo cultures.
    Grano M; Mori G; Minielli V; Barou O; Colucci S; Giannelli G; Alexandre C; Zallone AZ; Vico L
    Calcif Tissue Int; 2002 Mar; 70(3):176-85. PubMed ID: 11907715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hindlimb unloading and ionizing radiation on skeletal muscle resistance artery vasodilation and its relation to cancellous bone in mice.
    Prisby RD; Alwood JS; Behnke BJ; Stabley JN; McCullough DJ; Ghosh P; Globus RK; Delp MD
    J Appl Physiol (1985); 2016 Jan; 120(2):97-106. PubMed ID: 26472865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.
    Shirazi-Fard Y; Anthony RA; Kwaczala AT; Judex S; Bloomfield SA; Hogan HA
    Bone; 2013 Oct; 56(2):461-73. PubMed ID: 23871849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.