These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18558620)

  • 1. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.
    Newberg LA
    Bioinformatics; 2008 Aug; 24(16):1772-8. PubMed ID: 18558620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A memory-efficient algorithm for multiple sequence alignment with constraints.
    Lu CL; Huang YP
    Bioinformatics; 2005 Jan; 21(1):20-30. PubMed ID: 15374876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing storage requirements for biological sequence comparison.
    Roberts M; Hayes W; Hunt BR; Mount SM; Yorke JA
    Bioinformatics; 2004 Dec; 20(18):3363-9. PubMed ID: 15256412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grammatical inference in bioinformatics.
    Sakakibara Y
    IEEE Trans Pattern Anal Mach Intell; 2005 Jul; 27(7):1051-62. PubMed ID: 16013753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment.
    Manavski SA; Valle G
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S10. PubMed ID: 18387198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striped Smith-Waterman speeds database searches six times over other SIMD implementations.
    Farrar M
    Bioinformatics; 2007 Jan; 23(2):156-61. PubMed ID: 17110365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super pairwise alignment (SPA): an efficient approach to global alignment for homologous sequences.
    Shen SY; Yang J; Yao A; Hwang PI
    J Comput Biol; 2002; 9(3):477-86. PubMed ID: 12162887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MuSiC: a tool for multiple sequence alignment with constraints.
    Tsai YT; Huang YP; Yu CT; Lu CL
    Bioinformatics; 2004 Sep; 20(14):2309-11. PubMed ID: 15059840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
    Hong C; Tewfik AH
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):570-82. PubMed ID: 19875856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A space-efficient algorithm for the constrained pairwise sequence alignment problem.
    He D; Arslan AN
    Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pairwise sequence alignment for very long sequences on GPUs.
    Li J; Ranka S; Sahni S
    Int J Bioinform Res Appl; 2014; 10(4-5):345-68. PubMed ID: 24989857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pairwise alignment for very long nucleic acid sequences.
    Sun J; Chen K; Hao Z
    Biochem Biophys Res Commun; 2018 Jul; 502(3):313-317. PubMed ID: 29800571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic finite-state machines--part I.
    Vidal E; Thollard F; de la Higuera C; Casacuberta F; Carrasco RC
    IEEE Trans Pattern Anal Mach Intell; 2005 Jul; 27(7):1013-25. PubMed ID: 16013750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IPPRED: server for proteins interactions inference.
    Goffard N; Garcia V; Iragne F; Groppi A; de Daruvar A
    Bioinformatics; 2003 May; 19(7):903-4. PubMed ID: 12724307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parsing with probabilistic strictly locally testable tree languages.
    Verdú-Mas JL; Carrasco RC; Calera-Rubio J
    IEEE Trans Pattern Anal Mach Intell; 2005 Jul; 27(7):1040-50. PubMed ID: 16013752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences.
    Katoh K; Toh H
    Bioinformatics; 2007 Feb; 23(3):372-4. PubMed ID: 17118958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VisCoSe: visualization and comparison of consensus sequences.
    Spitzer M; Fuellen G; Cullen P; Lorkowski S
    Bioinformatics; 2004 Feb; 20(3):433-5. PubMed ID: 14960475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PatMaN: rapid alignment of short sequences to large databases.
    Prüfer K; Stenzel U; Dannemann M; Green RE; Lachmann M; Kelso J
    Bioinformatics; 2008 Jul; 24(13):1530-1. PubMed ID: 18467344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High similarity sequence comparison in clustering large sequence databases.
    Dudoignon L; Glemet E; Heus HC; Raffinot M
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():228-36. PubMed ID: 15838139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic finite-state machines--part II.
    Vidal E; Thollard F; de la Higuera C; Casacuberta F; Carrasco RC
    IEEE Trans Pattern Anal Mach Intell; 2005 Jul; 27(7):1026-39. PubMed ID: 16013751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.