These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 18558678)
1. DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures. Tanaka H; Mori H; Seino H; Hidai M; Mizobe Y; Yoshizawa K J Am Chem Soc; 2008 Jul; 130(28):9037-47. PubMed ID: 18558678 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study on activation and protonation of dinitrogen on cubane-type MIr3S4 clusters (M = V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, and W). Tanaka H; Ohsako F; Seino H; Mizobe Y; Yoshizawa K Inorg Chem; 2010 Mar; 49(5):2464-70. PubMed ID: 20121233 [TBL] [Abstract][Full Text] [Related]
3. Cubane-type heterometallic sulfido clusters: incorporation of two metal fragments into a dinuclear ReS(mu-S)2ReS core affording bimetallic M2Re2(mu 3-S)4 clusters (M = Ru, Pt, Cu) or trimetallic MM'Re2(mu 3-S)4 clusters via incomplete cubane-type MRe2(mu 3-S)(mu 2-S)3 intermediates (M = Ru, Rh, Ir; M' = Mo, W, Pd, Ru, Rh). Seino H; Kaneko T; Fujii S; Hidai M; Mizobe Y Inorg Chem; 2003 Jul; 42(15):4585-96. PubMed ID: 12870948 [TBL] [Abstract][Full Text] [Related]
4. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Schrock RR Angew Chem Int Ed Engl; 2008; 47(30):5512-22. PubMed ID: 18537212 [TBL] [Abstract][Full Text] [Related]
5. Energetics and mechanism of ammonia synthesis through the Chatt Cycle: conditions for a catalytic mode and comparison with the Schrock Cycle. Stephan GC; Sivasankar C; Studt F; Tuczek F Chemistry; 2008; 14(2):644-52. PubMed ID: 17973285 [TBL] [Abstract][Full Text] [Related]
6. Consequences of N,C,N'- and C,N,N'-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(II) complexes. Wadman SH; Lutz M; Tooke DM; Spek AL; Hartl F; Havenith RW; van Klink GP; van Koten G Inorg Chem; 2009 Mar; 48(5):1887-900. PubMed ID: 19235952 [TBL] [Abstract][Full Text] [Related]
7. Catalytic reduction of dinitrogen to ammonia at well-defined single metal sites. Schrock RR Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):959-69; discussion 1035-40. PubMed ID: 15901545 [TBL] [Abstract][Full Text] [Related]
8. Molybdenum triamidoamine complexes that contain hexa-tert-butylterphenyl, hexamethylterphenyl, or p-bromohexaisopropylterphenyl substituents. An examination of some catalyst variations for the catalytic reduction of dinitrogen. Ritleng V; Yandulov DV; Weare WW; Schrock RR; Hock AS; Davis WM J Am Chem Soc; 2004 May; 126(19):6150-63. PubMed ID: 15137780 [TBL] [Abstract][Full Text] [Related]
9. DFT-UX3LYP studies on the coordination chemistry of Ni2+. Part 1: Six coordinate [Ni(NH3)n(H2O)(6-n)]2+ complexes. Varadwaj PR; Cukrowski I; Marques HM J Phys Chem A; 2008 Oct; 112(42):10657-66. PubMed ID: 18823109 [TBL] [Abstract][Full Text] [Related]
10. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Yandulov DV; Schrock RR Science; 2003 Jul; 301(5629):76-8. PubMed ID: 12843387 [TBL] [Abstract][Full Text] [Related]
11. Density functional theory calculations and exploration of a possible mechanism of N2 reduction by nitrogenase. Huniar U; Ahlrichs R; Coucouvanis D J Am Chem Soc; 2004 Mar; 126(8):2588-601. PubMed ID: 14982469 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Pool JA; Lobkovsky E; Chirik PJ Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191 [TBL] [Abstract][Full Text] [Related]
13. A photochemical activation scheme of inert dinitrogen by dinuclear Ru(II) and Fe(II) complexes. Reiher M; Kirchner B; Hutter J; Sellmann D; Hess BA Chemistry; 2004 Sep; 10(18):4443-53. PubMed ID: 15378622 [TBL] [Abstract][Full Text] [Related]
14. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. Tanaka H; Nishibayashi Y; Yoshizawa K Acc Chem Res; 2016 May; 49(5):987-95. PubMed ID: 27105472 [TBL] [Abstract][Full Text] [Related]
15. First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full HIPTN3N ligand. Schenk S; Le Guennic B; Kirchner B; Reiher M Inorg Chem; 2008 May; 47(9):3634-50. PubMed ID: 18357978 [TBL] [Abstract][Full Text] [Related]
16. Binding N2, N2H2, N2H4, and NH3 to transition-metal sulfur sites: modeling potential intermediates of biological N2 fixation. Sellmann D; Hille A; Rösler A; Heinemann FW; Moll M; Brehm G; Schneider S; Reiher M; Hess BA; Bauer W Chemistry; 2004 Feb; 10(4):819-30. PubMed ID: 14978809 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen fixation under mild ambient conditions: part I--the initial dissociation/association step at molybdenum triamidoamine complexes. Le Guennic B; Kirchner B; Reiher M Chemistry; 2005 Dec; 11(24):7448-60. PubMed ID: 16267863 [TBL] [Abstract][Full Text] [Related]
18. Reduction pathway of end-on terminally coordinated dinitrogen. V. N-N bond cleavage in Mo/W hydrazidium complexes with diphosphine coligands. Comparison with triamidoamine systems. Mersmann K; Horn KH; Böres N; Lehnert N; Studt F; Paulat F; Peters G; Ivanovic-Burmazovic I; van Eldik R; Tuczek F Inorg Chem; 2005 May; 44(9):3031-45. PubMed ID: 15847407 [TBL] [Abstract][Full Text] [Related]
19. A theoretical study of X ligand effect on catalytic activity of complexes RuHX(diamine)(PPh(3))(2) (X = NCMe, CO, Cl, OMe, OPh, CCMe and H) in H(2)-hydrogenation of ketones. Chen Z; Chen Y; Tang Y; Lei M Dalton Trans; 2010 Feb; 39(8):2036-43. PubMed ID: 20148222 [TBL] [Abstract][Full Text] [Related]
20. Catalytic wet oxidation of ammonia: why is N2 formed preferentially against NO3 -? Lee DK; Cho JS; Yoon WL Chemosphere; 2005 Oct; 61(4):573-8. PubMed ID: 16202811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]