These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18558705)

  • 1. Antioxidation mechanism studies of caffeic acid: identification of antioxidation products of methyl caffeate from lipid oxidation.
    Masuda T; Yamada K; Akiyama J; Someya T; Odaka Y; Takeda Y; Tori M; Nakashima K; Maekawa T; Sone Y
    J Agric Food Chem; 2008 Jul; 56(14):5947-52. PubMed ID: 18558705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant mechanism studies on ferulic acid: identification of oxidative coupling products from methyl ferulate and linoleate.
    Masuda T; Yamada K; Maekawa T; Takeda Y; Yamaguchi H
    J Agric Food Chem; 2006 Aug; 54(16):6069-74. PubMed ID: 16881718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the antioxidation reaction products from a sinapic ester in a lipid oxidation system.
    Masuda T; Akiyama J; Takeda Y; Maekawa T; Sone Y
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):736-9. PubMed ID: 19270418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LC-MS investigation of oxidation products of phenolic antioxidants.
    Antolovich M; Bedgood DR; Bishop AG; Jardine D; Prenzler PD; Robards K
    J Agric Food Chem; 2004 Feb; 52(4):962-71. PubMed ID: 14969558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate.
    Masuda T; Maekawa T; Hidaka K; Bando H; Takeda Y; Yamaguchi H
    J Agric Food Chem; 2001 May; 49(5):2539-47. PubMed ID: 11368633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical evidence for the synergistic effect of a cysteinyl thiol on the antioxidant activity of caffeic and dihydrocaffeic esters.
    Fujimoto A; Inai M; Masuda T
    Food Chem; 2013 Jun; 138(2-3):1483-92. PubMed ID: 23411271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeic acid as antioxidant in fish muscle: mechanism of synergism with endogenous ascorbic acid and alpha-tocopherol.
    Iglesias J; Pazos M; Andersen ML; Skibsted LH; Medina I
    J Agric Food Chem; 2009 Jan; 57(2):675-81. PubMed ID: 19117418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidation of caffeic acid derivatives as model reaction for the formation of potent gonadotropin inhibitors in plant extracts.
    John M; Gumbinger HG; Winterhoff H
    Planta Med; 1993 Jun; 59(3):195-9. PubMed ID: 8316585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative methyl linoleate and methyl linolenate oxidation in the presence of bovine serum albumin at several lipid/protein ratios.
    Zamora R; Hidalgo FJ
    J Agric Food Chem; 2003 Jul; 51(16):4661-7. PubMed ID: 14705893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction products of [60]fullerene during the autoxidation of methyl linoleate in bulk phase.
    Kadowaki A; Iwamoto S; Yamauchi R
    Chem Phys Lipids; 2012 Feb; 165(2):178-85. PubMed ID: 22209921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid hydroperoxidase activity of myoglobin and phenolic antioxidants in simulated gastric fluid.
    Lapidot T; Granit R; Kanner J
    J Agric Food Chem; 2005 May; 53(9):3391-6. PubMed ID: 15853377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AAPH or Peroxynitrite-Induced Biorelevant Oxidation of Methyl Caffeate Yields a Potent Antitumor Metabolite.
    Fási L; Latif AD; Zupkó I; Lévai S; Dékány M; Béni Z; Könczöl Á; Balogh GT; Hunyadi A
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33187226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model studies on the degradation of phenylalanine initiated by lipid hydroperoxides and their secondary and tertiary oxidation products.
    Zamora R; Gallardo E; Hidalgo FJ
    J Agric Food Chem; 2008 Sep; 56(17):7970-5. PubMed ID: 18707112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation products of caffeic acid as model substances for the antigonadotropic activity of plant extracts.
    John M; Gumbinger HG; Winterhoff H
    Planta Med; 1990 Feb; 56(1):14-8. PubMed ID: 2356237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel oxidative dimer from caffeic acid.
    Tazaki H; Kawabata J; Fujita T
    Biosci Biotechnol Biochem; 2003 May; 67(5):1185-7. PubMed ID: 12834308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical interaction between polyphenols and a cysteinyl thiol under radical oxidation conditions.
    Fujimoto A; Masuda T
    J Agric Food Chem; 2012 May; 60(20):5142-51. PubMed ID: 22551224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism.
    Muñoz-Muñoz JL; García-Molina F; García-Ruiz PA; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    Biochem J; 2008 Dec; 416(3):431-40. PubMed ID: 18647136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on dimerisation of tocopherols under the influence of methyl linoleate peroxides.
    Gogolewski M; Nogala-Kalucka M; Galuba G
    Nahrung; 2003 Apr; 47(2):74-8. PubMed ID: 12744282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions.
    Sørensen AD; Haahr AM; Becker EM; Skibsted LH; Bergenståhl B; Nilsson L; Jacobsen C
    J Agric Food Chem; 2008 Mar; 56(5):1740-50. PubMed ID: 18271542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges.
    Laguerre M; Lecomte J; Villeneuve P
    Prog Lipid Res; 2007 Sep; 46(5):244-82. PubMed ID: 17651808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.