These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 18558737)
1. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co--caprolactone) substrates. Shin YM; Kim KS; Lim YM; Nho YC; Shin H Biomacromolecules; 2008 Jul; 9(7):1772-81. PubMed ID: 18558737 [TBL] [Abstract][Full Text] [Related]
2. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677 [TBL] [Abstract][Full Text] [Related]
3. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
4. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Prabhakaran MP; Venugopal JR; Ramakrishna S Biomaterials; 2009 Oct; 30(28):4996-5003. PubMed ID: 19539369 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of collagen hybridized elastic PLCL for tissue engineering. Lim JI; Yu B; Lee YK Biotechnol Lett; 2008 Dec; 30(12):2085-90. PubMed ID: 18661107 [TBL] [Abstract][Full Text] [Related]
6. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering. Garkhal K; Verma S; Tikoo K; Kumar N J Biomed Mater Res A; 2007 Sep; 82(3):747-56. PubMed ID: 17326230 [TBL] [Abstract][Full Text] [Related]
7. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
8. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330 [TBL] [Abstract][Full Text] [Related]
9. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438 [TBL] [Abstract][Full Text] [Related]
10. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Zhao F; Grayson WL; Ma T; Bunnell B; Lu WW Biomaterials; 2006 Mar; 27(9):1859-67. PubMed ID: 16225916 [TBL] [Abstract][Full Text] [Related]
11. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Kwon IK; Kidoaki S; Matsuda T Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440 [TBL] [Abstract][Full Text] [Related]
12. Engineered polyelectrolyte multilayer substrates for adhesion, proliferation, and differentiation of human mesenchymal stem cells. Semenov OV; Malek A; Bittermann AG; Vörös J; Zisch AH Tissue Eng Part A; 2009 Oct; 15(10):2977-90. PubMed ID: 19320572 [TBL] [Abstract][Full Text] [Related]
13. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. Pankajakshan D; Krishnan V K; Krishnan LK J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433 [TBL] [Abstract][Full Text] [Related]
14. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study. Tielens S; Declercq H; Gorski T; Lippens E; Schacht E; Cornelissen M Biomacromolecules; 2007 Mar; 8(3):825-32. PubMed ID: 17266367 [TBL] [Abstract][Full Text] [Related]
15. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-beta1 loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex. Jung Y; Chung YI; Kim SH; Tae G; Kim YH; Rhie JW; Kim SH; Kim SH Biomaterials; 2009 Sep; 30(27):4657-64. PubMed ID: 19520426 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558 [TBL] [Abstract][Full Text] [Related]
17. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone. Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444 [TBL] [Abstract][Full Text] [Related]
18. Characterization of 75:25 poly(l-lactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms. Burks CA; Bundy K; Fotuhi P; Alt E Tissue Eng; 2006 Sep; 12(9):2591-600. PubMed ID: 16995792 [TBL] [Abstract][Full Text] [Related]
19. A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Mohan N; Nair PD Tissue Eng Part A; 2010 Feb; 16(2):373-84. PubMed ID: 19566439 [TBL] [Abstract][Full Text] [Related]
20. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Jun I; Jeong S; Shin H Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]