These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18558772)

  • 1. Cell motion model for moving dielectrophoresis.
    Kua CH; Lam YC; Rodriguez I; Yang C; Youcef-Toumi K
    Anal Chem; 2008 Jul; 80(14):5454-61. PubMed ID: 18558772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic cell fractionation and transportation using moving dielectrophoresis.
    Kua CH; Lam YC; Rodriguez I; Yang C; Youcef-Toumi K
    Anal Chem; 2007 Sep; 79(18):6975-87. PubMed ID: 17702529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.
    Mathew B; Alazzam A; Abutayeh M; Stiharu I
    J Sep Sci; 2016 Aug; 39(15):3028-36. PubMed ID: 27322871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic motion of a sphere in a microchannel under the gravitational field.
    Ye C; Li D
    J Colloid Interface Sci; 2002 Jul; 251(2):331-8. PubMed ID: 16290737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nozzle-Shaped Electrode Configuration for Dielectrophoretic 3D-Focusing of Microparticles.
    Krishna S; Alnaimat F; Mathew B
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480490
    [No Abstract]   [Full Text] [Related]  

  • 7. Dielectrophoresis Multipath Focusing of Microparticles through Perforated Electrodes in Microfluidic Channels.
    Alazzam A; Al-Khaleel M; Riahi MK; Mathew B; Gawanmeh A; Nerguizian V
    Biosensors (Basel); 2019 Aug; 9(3):. PubMed ID: 31394810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous separation of microparticles by size with direct current-dielectrophoresis.
    Kang KH; Kang Y; Xuan X; Li D
    Electrophoresis; 2006 Feb; 27(3):694-702. PubMed ID: 16385598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.
    Ai Y; Joo SW; Jiang Y; Xuan X; Qian S
    Electrophoresis; 2009 Jul; 30(14):2499-506. PubMed ID: 19639572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ac dielectrophoresis of tin oxide nanobelts suspended in ethanol: manipulation and visualization.
    Kumar S; Peng Z; Shin H; Wang ZL; Hesketh PJ
    Anal Chem; 2010 Mar; 82(6):2204-12. PubMed ID: 20151680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices.
    Alnaimat F; Ramesh S; Alazzam A; Hilal-Alnaqbi A; Waheed W; Mathew B
    Cytometry A; 2018 Aug; 93(8):811-821. PubMed ID: 30160818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and deformation of droplets in a microdevice using dielectrophoresis.
    Singh P; Aubry N
    Electrophoresis; 2007 Feb; 28(4):644-57. PubMed ID: 17304498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation and characterization of red blood cells with alternating current fields in microdevices.
    Minerick AR; Zhou R; Takhistov P; Chang HC
    Electrophoresis; 2003 Nov; 24(21):3703-17. PubMed ID: 14613196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion, deformation and aggregation of two cells in a microchannel by dielectrophoresis.
    Ye T; Li H; Lam KY
    Electrophoresis; 2011 Nov; 32(22):3147-56. PubMed ID: 22025180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of frequency-dependent electrokinetic forces on tin oxide nanobelts in low frequency electric fields.
    Kumar S; Hesketh PJ
    Nanotechnology; 2010 Aug; 21(32):325501. PubMed ID: 20647628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of dielectrophoresis based 3D-focusing in microfluidic devices with planar electrodes.
    Hilal-Alnaqbi A; Alazzam A; Dagher S; Mathew B
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3588-3591. PubMed ID: 29060674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple frequency dielectrophoresis.
    Urdaneta M; Smela E
    Electrophoresis; 2007 Sep; 28(18):3145-55. PubMed ID: 17703466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.
    Dürr M; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2003 Feb; 24(4):722-31. PubMed ID: 12601744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a method to analyze single cell activity by using dielectrophoretic levitation.
    Hakoda M; Hachisu T; Wakizaka Y; Mii S; Kitajima N
    Biotechnol Prog; 2005; 21(6):1748-53. PubMed ID: 16321061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.