These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18559269)

  • 21. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer.
    Bollivar DW; Clauson C; Lighthall R; Forbes S; Kokona B; Fairman R; Kundrat L; Jaffe EK
    BMC Biochem; 2004 Nov; 5():17. PubMed ID: 15555082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The morpheein model of allosterism: a remedial step for targeting virulent l-asparaginase.
    Vimal A; Kumar A
    Drug Discov Today; 2017 May; 22(5):814-822. PubMed ID: 27742536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and unregulated dimeric type I enzymes.
    Nguyen NT; Maurus R; Stokell DJ; Ayed A; Duckworth HW; Brayer GD
    Biochemistry; 2001 Nov; 40(44):13177-87. PubMed ID: 11683626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic dissociating homo-oligomers and the control of protein function.
    Selwood T; Jaffe EK
    Arch Biochem Biophys; 2012 Mar; 519(2):131-43. PubMed ID: 22182754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How allosteric effectors can bind to the same protein residue and produce opposite shifts in the allosteric equilibrium.
    Abraham DJ; Safo MK; Boyiri T; Danso-Danquah RE; Kister J; Poyart C
    Biochemistry; 1995 Nov; 34(46):15006-20. PubMed ID: 7578114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions.
    Frankenberg N; Jahn D; Jaffe EK
    Biochemistry; 1999 Oct; 38(42):13976-82. PubMed ID: 10529244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of an allosteric site in the caspases.
    Hardy JA; Lam J; Nguyen JT; O'Brien T; Wells JA
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12461-6. PubMed ID: 15314233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases.
    Maurus R; Nguyen NT; Stokell DJ; Ayed A; Hultin PG; Duckworth HW; Brayer GD
    Biochemistry; 2003 May; 42(19):5555-65. PubMed ID: 12741811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers.
    Brouwer M; Serigstad B
    Biochemistry; 1989 Oct; 28(22):8819-27. PubMed ID: 2605223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Allosteric modulation of protein oligomerization: an emerging approach to drug design.
    Gabizon R; Friedler A
    Front Chem; 2014; 2():9. PubMed ID: 24790978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 5-Chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinc.
    Jaffe EK; Abrams WR; Kaempfen HX; Harris KA
    Biochemistry; 1992 Feb; 31(7):2113-23. PubMed ID: 1346974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium.
    Hayouka Z; Rosenbluh J; Levin A; Loya S; Lebendiker M; Veprintsev D; Kotler M; Hizi A; Loyter A; Friedler A
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8316-21. PubMed ID: 17488811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tailoring small molecules for an allosteric site on procaspase-6.
    Murray J; Giannetti AM; Steffek M; Gibbons P; Hearn BR; Cohen F; Tam C; Pozniak C; Bravo B; Lewcock J; Jaishankar P; Ly CQ; Zhao X; Tang Y; Chugha P; Arkin MR; Flygare J; Renslo AR
    ChemMedChem; 2014 Jan; 9(1):73-7, 2. PubMed ID: 24259468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II).
    Mitchell LW; Jaffe EK
    Arch Biochem Biophys; 1993 Jan; 300(1):169-77. PubMed ID: 8424649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases.
    Chio CM; Yu X; Bishop AC
    Bioorg Med Chem; 2015 Jun; 23(12):2828-38. PubMed ID: 25828055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase.
    Jaffe EK
    Chem Biol; 2003 Jan; 10(1):25-34. PubMed ID: 12573695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse clinical compounds alter the quaternary structure and inhibit the activity of an essential enzyme.
    Lawrence SH; Selwood T; Jaffe EK
    ChemMedChem; 2011 Jun; 6(6):1067-73. PubMed ID: 21506274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.
    Huang W; Nussinov R; Zhang J
    Methods Mol Biol; 2017; 1529():439-446. PubMed ID: 27914066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Allosteric properties of G protein-coupled receptor oligomers.
    Springael JY; Urizar E; Costagliola S; Vassart G; Parmentier M
    Pharmacol Ther; 2007 Sep; 115(3):410-8. PubMed ID: 17655934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.