These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

836 related articles for article (PubMed ID: 18559818)

  • 1. Viviparity-driven conflict: more to speciation than meets the fly.
    Zeh JA; Zeh DW
    Ann N Y Acad Sci; 2008; 1133():126-48. PubMed ID: 18559818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproductive mode and speciation: the viviparity-driven conflict hypothesis.
    Zeh DW; Zeh JA
    Bioessays; 2000 Oct; 22(10):938-46. PubMed ID: 10984720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the viviparity-driven-conflict hypothesis: parent-offspring conflict and the evolution of reproductive isolation in a poeciliid fish.
    Schrader M; Travis J
    Am Nat; 2008 Dec; 172(6):806-17. PubMed ID: 18950276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproductive isolation, reproductive mode, and sexual selection: empirical tests of the viviparity-driven conflict hypothesis.
    Coleman SW; Harlin-Cognato A; Jones AG
    Am Nat; 2009 Mar; 173(3):291-303. PubMed ID: 19199523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation by postzygotic isolation: forces, genes and molecules.
    Orr HA; Presgraves DC
    Bioessays; 2000 Dec; 22(12):1085-94. PubMed ID: 11084624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dualism and conflicts in understanding speciation.
    Schilthuizen M
    Bioessays; 2000 Dec; 22(12):1134-41. PubMed ID: 11084629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sexual conflict does not drive reproductive isolation in experimental populations of Drosophila pseudoobscura.
    Bacigalupe LD; Crudgington HS; Hunter F; Moore AJ; Snook RR
    J Evol Biol; 2007 Sep; 20(5):1763-71. PubMed ID: 17714294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What does Drosophila genetics tell us about speciation?
    Mallet J
    Trends Ecol Evol; 2006 Jul; 21(7):386-93. PubMed ID: 16765478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic architecture and postzygotic reproductive isolation: evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model.
    Fierst JL; Hansen TF
    Evolution; 2010 Mar; 64(3):675-93. PubMed ID: 19817852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetics of postzygotic reproductive isolation in plants].
    Voĭlokov AV; Tikhenko ND
    Genetika; 2009 Jun; 45(6):729-44. PubMed ID: 19639864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic imprinting and the evolution of sex differences in mammalian reproductive strategies.
    Keverne EB
    Adv Genet; 2007; 59():217-43. PubMed ID: 17888800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conflictual speciation: species formation via genomic conflict.
    Crespi B; Nosil P
    Trends Ecol Evol; 2013 Jan; 28(1):48-57. PubMed ID: 22995895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulation divergence is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila.
    Haerty W; Singh RS
    Mol Biol Evol; 2006 Sep; 23(9):1707-14. PubMed ID: 16757655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis.
    Normark BB
    Evolution; 2006 Apr; 60(4):631-42. PubMed ID: 16739447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of speciation in endemic Mexican Goodeid fish: sexual conflict or early radiation?
    Ritchie MG; Webb SA; Graves JA; Magurran AE; Macias Garcia C
    J Evol Biol; 2005 Jul; 18(4):922-9. PubMed ID: 16033564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for ecological speciation and its alternative.
    Schluter D
    Science; 2009 Feb; 323(5915):737-41. PubMed ID: 19197053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast.
    Dettman JR; Sirjusingh C; Kohn LM; Anderson JB
    Nature; 2007 May; 447(7144):585-8. PubMed ID: 17538619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecology and genetics of speciation in Ficedula flycatchers.
    Saetre GP; Saether SA
    Mol Ecol; 2010 Mar; 19(6):1091-106. PubMed ID: 20163542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetics and ecology of reinforcement: implications for the evolution of prezygotic isolation in sympatry and beyond.
    Ortiz-Barrientos D; Grealy A; Nosil P
    Ann N Y Acad Sci; 2009 Jun; 1168():156-82. PubMed ID: 19566707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evolution of postzygotic reproductive isolation in stalk-eyed flies.
    Christianson SJ; Swallow JG; Wilkinson GS
    Evolution; 2005 Apr; 59(4):849-57. PubMed ID: 15926694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.