BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 18559986)

  • 21. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in hyp mice.
    Karaplis AC; Bai X; Falet JP; Macica CM
    Endocrinology; 2012 Dec; 153(12):5906-17. PubMed ID: 23038738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.
    Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD
    PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
    Wolf M; White KE
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):411-9. PubMed ID: 24867675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.
    Quarles LD
    Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E1-9. PubMed ID: 12791601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.
    Ichikawa S; Gray AK; Padgett LR; Allen MR; Clinkenbeard EL; Sarpa NM; White KE; Econs MJ
    Endocrinology; 2014 Oct; 155(10):3891-8. PubMed ID: 25051439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutational analysis of PHEX, FGF23 and DMP1 in a cohort of patients with hypophosphatemic rickets.
    Ruppe MD; Brosnan PG; Au KS; Tran PX; Dominguez BW; Northrup H
    Clin Endocrinol (Oxf); 2011 Mar; 74(3):312-8. PubMed ID: 21050253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-Linked Hypophosphatemia and FGF23-Related Hypophosphatemic Diseases: Prospect for New Treatment.
    Kinoshita Y; Fukumoto S
    Endocr Rev; 2018 Jun; 39(3):274-291. PubMed ID: 29381780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets.
    Farrow EG; Davis SI; Ward LM; Summers LJ; Bubbear JS; Keen R; Stamp TC; Baker LR; Bonewald LF; White KE
    Bone; 2009 Feb; 44(2):287-94. PubMed ID: 19007919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice.
    Murali SK; Andrukhova O; Clinkenbeard EL; White KE; Erben RG
    PLoS Biol; 2016 Apr; 14(4):e1002427. PubMed ID: 27035636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DMP1 Ablation in the Rabbit Results in Mineralization Defects and Abnormalities in Haversian Canal/Osteon Microarchitecture.
    Liu T; Wang J; Xie X; Wang K; Sui T; Liu D; Lai L; Zhao H; Li Z; Feng JQ
    J Bone Miner Res; 2019 Jun; 34(6):1115-1128. PubMed ID: 30827034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Therapies for Hypophosphatemia-Related to FGF23 Excess.
    Athonvarangkul D; Insogna KL
    Calcif Tissue Int; 2021 Jan; 108(1):143-157. PubMed ID: 32504139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soluble Klotho causes hypomineralization in Klotho-deficient mice.
    Minamizaki T; Konishi Y; Sakurai K; Yoshioka H; Aubin JE; Kozai K; Yoshiko Y
    J Endocrinol; 2018 Jun; 237(3):285-300. PubMed ID: 29632215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23.
    Ren Y; Han X; Jing Y; Yuan B; Ke H; Liu M; Feng JQ
    Matrix Biol; 2016; 52-54():151-161. PubMed ID: 26721590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Regulation and disorders of calcium and phosphate metabolism].
    Michigami T
    Clin Calcium; 2014 Feb; 24(2):169-75. PubMed ID: 24473349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations.
    Imel EA; DiMeglio LA; Hui SL; Carpenter TO; Econs MJ
    J Clin Endocrinol Metab; 2010 Apr; 95(4):1846-50. PubMed ID: 20157195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism.
    Gattineni J; Baum M
    Pediatr Nephrol; 2010 Apr; 25(4):591-601. PubMed ID: 19669798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity.
    Liu S; Rowe PS; Vierthaler L; Zhou J; Quarles LD
    J Endocrinol; 2007 Jan; 192(1):261-7. PubMed ID: 17210763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice.
    Farrow EG; Yu X; Summers LJ; Davis SI; Fleet JC; Allen MR; Robling AG; Stayrook KR; Jideonwo V; Magers MJ; Garringer HJ; Vidal R; Chan RJ; Goodwin CB; Hui SL; Peacock M; White KE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1146-55. PubMed ID: 22006328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FGF23 and syndromes of abnormal renal phosphate handling.
    Bergwitz C; Jüppner H
    Adv Exp Med Biol; 2012; 728():41-64. PubMed ID: 22396161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate.
    David V; Martin A; Hedge AM; Drezner MK; Rowe PS
    Am J Physiol Renal Physiol; 2011 Mar; 300(3):F783-91. PubMed ID: 21177780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.