BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 18560208)

  • 1. Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates.
    Farris SM
    Brain Behav Evol; 2008; 72(1):1-15. PubMed ID: 18560208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tritocerebral tract input to the insect mushroom bodies.
    Farris SM
    Arthropod Struct Dev; 2008 Nov; 37(6):492-503. PubMed ID: 18590832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are mushroom bodies cerebellum-like structures?
    Farris SM
    Arthropod Struct Dev; 2011 Jul; 40(4):368-79. PubMed ID: 21371566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects.
    Farris SM
    Brain Behav Evol; 2013; 82(1):9-18. PubMed ID: 23979452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary.
    Farris SM
    Brain Behav Evol; 2008; 72(2):106-22. PubMed ID: 18836257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium.
    Tomer R; Denes AS; Tessmar-Raible K; Arendt D
    Cell; 2010 Sep; 142(5):800-9. PubMed ID: 20813265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana.
    Li Y; Strausfeld NJ
    J Comp Neurol; 1997 Nov; 387(4):631-50. PubMed ID: 9373016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects.
    Farris SM; Roberts NS
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17394-9. PubMed ID: 16293692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain size: a global or induced cost of learning?
    Snell-Rood EC; Papaj DR; Gronenberg W
    Brain Behav Evol; 2009; 73(2):111-28. PubMed ID: 19390176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of brain size and organization in vertebrates. A program for research.
    Aboitiz F
    Biol Res; 1994; 27(1):15-27. PubMed ID: 7647812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and robust learning by reinforcement signals: explorations in the insect brain.
    Huerta R; Nowotny T
    Neural Comput; 2009 Aug; 21(8):2123-51. PubMed ID: 19538091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center.
    Farris SM; Sinakevitch I
    Arthropod Struct Dev; 2003 Aug; 32(1):79-101. PubMed ID: 18088997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect.
    Farris SM
    Evol Dev; 2005; 7(2):150-9. PubMed ID: 15733313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body.
    Doeffinger C; Hartenstein V; Stollewerk A
    J Comp Neurol; 2010 Jul; 518(13):2612-32. PubMed ID: 20503430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual inputs to the mushroom body calyces of the whirligig beetle Dineutus sublineatus: modality switching in an insect.
    Lin C; Strausfeld NJ
    J Comp Neurol; 2012 Aug; 520(12):2562–74. PubMed ID: 22684942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of microglomerular structures in the mushroom body calyx of neopteran insects.
    Groh C; Rössler W
    Arthropod Struct Dev; 2011 Jul; 40(4):358-67. PubMed ID: 21185946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals.
    Mizunami M; Okada R; Li Y; Strausfeld NJ
    J Comp Neurol; 1998 Dec; 402(4):501-19. PubMed ID: 9862323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal sensory integration in insects--towards insect brain control architectures.
    Wessnitzer J; Webb B
    Bioinspir Biomim; 2006 Sep; 1(3):63-75. PubMed ID: 17671308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural organization of ocellar pathways in the cockroach brain.
    Mizunami M
    J Comp Neurol; 1995 Feb; 352(3):458-68. PubMed ID: 7706561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Structural and functional organisation of dragonflies' mushroom bodies. ].
    Sviderskiĭ VL; Plotnikova SI
    Zh Evol Biokhim Fiziol; 2004; 40(6):495-507. PubMed ID: 15929411
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.