BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 18560432)

  • 1. Insights into signaling from the beta2-adrenergic receptor structure.
    Audet M; Bouvier M
    Nat Chem Biol; 2008 Jul; 4(7):397-403. PubMed ID: 18560432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies.
    Yuzlenko O; Kieć-Kononowicz K
    J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
    Goetz A; Lanig H; Gmeiner P; Clark T
    J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.
    Rosenbaum DM; Cherezov V; Hanson MA; Rasmussen SG; Thian FS; Kobilka TS; Choi HJ; Yao XJ; Weis WI; Stevens RC; Kobilka BK
    Science; 2007 Nov; 318(5854):1266-73. PubMed ID: 17962519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy.
    Galandrin S; Bouvier M
    Mol Pharmacol; 2006 Nov; 70(5):1575-84. PubMed ID: 16901982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational complexity of G-protein-coupled receptors.
    Kobilka BK; Deupi X
    Trends Pharmacol Sci; 2007 Aug; 28(8):397-406. PubMed ID: 17629961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug design strategies for targeting G-protein-coupled receptors.
    Klabunde T; Hessler G
    Chembiochem; 2002 Oct; 3(10):928-44. PubMed ID: 12362358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery.
    Topiol S; Sabio M
    Bioorg Med Chem Lett; 2008 Mar; 18(5):1598-602. PubMed ID: 18243704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching modes for G protein-coupled receptor activation.
    Vilardaga JP
    Nat Chem Biol; 2006 Aug; 2(8):395-6. PubMed ID: 16850011
    [No Abstract]   [Full Text] [Related]  

  • 15. Biochemistry. Signaling across the cell membrane.
    Ranganathan R
    Science; 2007 Nov; 318(5854):1253-4. PubMed ID: 18033872
    [No Abstract]   [Full Text] [Related]  

  • 16. Beyond rhodopsin: G protein-coupled receptor structure and modeling incorporating the beta2-adrenergic and adenosine A(2A) crystal structures.
    Tebben AJ; Schnur DM
    Methods Mol Biol; 2011; 672():359-86. PubMed ID: 20838977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of ligand-induced conformational states in the beta 2 adrenergic receptor.
    Kobilka B; Gether U; Seifert R; Lin S; Ghanouni P
    J Recept Signal Transduct Res; 1999; 19(1-4):293-300. PubMed ID: 10071765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional models for agonist and antagonist complexes with beta 2 adrenergic receptor.
    Kontoyianni M; DeWeese C; Penzotti JE; Lybrand TP
    J Med Chem; 1996 Oct; 39(22):4406-20. PubMed ID: 8893835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of "ionic lock" formation in molecular dynamics simulations of wild-type beta 1 and beta 2 adrenergic receptors.
    Vanni S; Neri M; Tavernelli I; Rothlisberger U
    Biochemistry; 2009 Jun; 48(22):4789-97. PubMed ID: 19378975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of conformational ensembles of seven transmembrane receptors in functional selectivity.
    Vaidehi N; Kenakin T
    Curr Opin Pharmacol; 2010 Dec; 10(6):775-81. PubMed ID: 20933468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.