These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18560653)

  • 1. Chairside evaluation of pH-lowering activity and lactic acid production of dental plaque: correlation with caries experience and incidence in preschool children.
    Shimizu K; Igarashi K; Takahashi N
    Quintessence Int; 2008 Feb; 39(2):151-8. PubMed ID: 18560653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical Assessment of a New Caries Activity Test Using Dental Plaque Acidogenicity in Children under Three Years of Age.
    Lee HS; Lee ES; Kang SM; Lee JH; Choi HJ; Kim BI
    J Clin Pediatr Dent; 2016; 40(5):388-92. PubMed ID: 27617379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of oral health condition in individuals with no oral hygiene and its association with plaque acidogenesis.
    Gao XJ; Deng DM; Geng QM
    Chin J Dent Res; 2000 Aug; 3(2):44-8. PubMed ID: 11314518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baseline dental plaque activity, mutans streptococci culture, and future caries experience in children.
    Hallett KB; O'Rourke PK
    Pediatr Dent; 2013; 35(7):523-8. PubMed ID: 24553276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and activity assessment of primary coronal caries lesions: a methodologic study.
    Ekstrand KR; Martignon S; Ricketts DJ; Qvist V
    Oper Dent; 2007; 32(3):225-35. PubMed ID: 17555173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plaque pH and associated parameters in relation to caries.
    Dong YM; Pearce EI; Yue L; Larsen MJ; Gao XJ; Wang JD
    Caries Res; 1999; 33(6):428-36. PubMed ID: 10529527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition of pooled plaque fluid from caries-free and caries-positive individuals following sucrose exposure.
    Margolis HC; Moreno EC
    J Dent Res; 1992 Nov; 71(11):1776-84. PubMed ID: 1401439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical success of stainless steel crowns placed under general anaesthesia in primary molars: an observational follow up study.
    Schüler IM; Hiller M; Roloff T; Kühnisch J; Heinrich-Weltzien R
    J Dent; 2014 Nov; 42(11):1396-403. PubMed ID: 24994618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of sucrose on plaque pH in the primary and permanent dentition of caries-inactive and -active Kenyan children.
    Fejerskov O; Scheie AA; Manji F
    J Dent Res; 1992 Jan; 71(1):25-31. PubMed ID: 1740552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cariogenic potential of pooled plaque fluid from exposed root surfaces in humans.
    Margolis HC; Zhang YP; Gewirtz A; Van Houte J; Moreno EC
    Arch Oral Biol; 1993 Feb; 38(2):131-8. PubMed ID: 8476342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between interdental plaque acidogenicity and caries risk at surface level: a cross sectional study in primary dentition.
    Cagetti MG; Campus G; Sale S; Cocco F; Strohmenger L; Lingström P
    Int J Paediatr Dent; 2011 Mar; 21(2):119-25. PubMed ID: 20731733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of caries activity with the composition of dental plaque fluid.
    Gao XJ; Fan Y; Kent RL; Van Houte J; Margolis HC
    J Dent Res; 2001 Sep; 80(9):1834-9. PubMed ID: 11926243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of mutans streptococci in plaque and saliva: correlation with caries development in preschool children.
    Seki M; Karakama F; Terajima T; Ichikawa Y; Ozaki T; Yoshida S; Yamashita Y
    J Dent; 2003 May; 31(4):283-90. PubMed ID: 12735923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid formation in sucrose-exposed dental plaque in relation to caries incidence in schoolchildren.
    Borgström MK; Edwardsson S; Svensäter G; Twetman S
    Clin Oral Investig; 2000 Mar; 4(1):9-12. PubMed ID: 11218518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The value of a baseline caries risk assessment model in the primary dentition for the prediction of caries incidence in the permanent dentition.
    Vanobbergen J; Martens L; Lesaffre E; Bogaerts K; Declerck D
    Caries Res; 2001; 35(6):442-50. PubMed ID: 11799285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of caries risk children and prevention of caries in pre-school children.
    Holst A; Mårtensson I; Laurin M
    Swed Dent J; 1997; 21(5):185-91. PubMed ID: 9472147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between caries in the primary dentition at 5 years of age and permanent dentition at 10 years of age - a longitudinal study.
    Skeie MS; Raadal M; Strand GV; Espelid I
    Int J Paediatr Dent; 2006 May; 16(3):152-60. PubMed ID: 16643535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enzymological profile of the production of lactic acid in caries-associated plaque and in plaque formed on sound surfaces of deciduous teeth.
    Tanaka H; Tamura M; Kikuchi K; Kuwata F; Hirano Y; Hayashi K
    Caries Res; 1993; 27(2):130-4. PubMed ID: 8319256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral arginine metabolism may decrease the risk for dental caries in children.
    Nascimento MM; Liu Y; Kalra R; Perry S; Adewumi A; Xu X; Primosch RE; Burne RA
    J Dent Res; 2013 Jul; 92(7):604-8. PubMed ID: 23640952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pH of dental plaque in its relation to early enamel caries and dental plaque flora in humans.
    Lingström P; van Ruyven FO; van Houte J; Kent R
    J Dent Res; 2000 Feb; 79(2):770-7. PubMed ID: 10728979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.