These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18561029)

  • 1. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery.
    Hsu MH; Su YC
    Biomed Microdevices; 2008 Dec; 10(6):785. PubMed ID: 18561029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.
    Meyer H; Winkler F; Kunz P; Schmidt AM; Hamacher A; Kassack MU; Janiak C
    Inorg Chem; 2015 Dec; 54(23):11236-46. PubMed ID: 26595858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.
    Patil H; Kulkarni V; Majumdar S; Repka MA
    Int J Pharm; 2014 Aug; 471(1-2):153-6. PubMed ID: 24853459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications.
    Kettering M; Zorn H; Bremer-Streck S; Oehring H; Zeisberger M; Bergemann C; Hergt R; Halbhuber KJ; Kaiser WA; Hilger I
    Phys Med Biol; 2009 Sep; 54(17):5109-21. PubMed ID: 19661569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect.
    Hayashi K; Ono K; Suzuki H; Sawada M; Moriya M; Sakamoto W; Yogo T
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1903-11. PubMed ID: 20568697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery.
    Zoubari G; Staufenbiel S; Volz P; Alexiev U; Bodmeier R
    Eur J Pharm Biopharm; 2017 Jan; 110():39-46. PubMed ID: 27810471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Porous γ-Fe2O3@mWO3 Multifunctional Nanoparticles for Drug Loading and Controlled Release.
    Peng H; Huang Q; Wu T; Wen J; He H
    Curr Drug Deliv; 2018 Feb; 15(2):278-285. PubMed ID: 28240176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.
    Boguslavsky Y; Margel S
    J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of maghemite nanoparticles from mild steel for magnetically guided drug therapy.
    Kumar N; Kulkarni K; Behera L; Verma V
    J Mater Sci Mater Med; 2017 Aug; 28(8):116. PubMed ID: 28681216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery.
    Chen S; Li Y; Guo C; Wang J; Ma J; Liang X; Yang LR; Liu HZ
    Langmuir; 2007 Dec; 23(25):12669-76. PubMed ID: 17988160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent nonlinear weak-field magnetic behavior of maghemite nanoparticles.
    de Montferrand C; Lalatonne Y; Bonnin D; Lièvre N; Lecouvey M; Monod P; Russier V; Motte L
    Small; 2012 Jun; 8(12):1945-56. PubMed ID: 22488765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths.
    McGill SL; Cuylear CL; Adolphi NL; Osiński M; Smyth HD
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):33-42. PubMed ID: 19304499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.
    Dan N
    Langmuir; 2014 Nov; 30(46):13809-14. PubMed ID: 25375259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size control of magnetic carbon nanoparticles for drug delivery.
    Oh WK; Yoon H; Jang J
    Biomaterials; 2010 Feb; 31(6):1342-8. PubMed ID: 19878989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays.
    Lai JJ; Hoffman JM; Ebara M; Hoffman AS; Estournès C; Wattiaux A; Stayton PS
    Langmuir; 2007 Jun; 23(13):7385-91. PubMed ID: 17503854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic hydrogels derived from polysaccharides with improved specific power absorption: potential devices for remotely triggered drug delivery.
    Hernández R; Sacristán J; Asín L; Torres TE; Ibarra MR; Goya GF; Mijangos C
    J Phys Chem B; 2010 Sep; 114(37):12002-7. PubMed ID: 20806925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique.
    Mojahedian MM; Daneshamouz S; Samani SM; Zargaran A
    Chem Phys Lipids; 2013 Sep; 174():32-8. PubMed ID: 23743405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis.
    Bomatí-Miguel O; Tartaj P; Morales MP; Bonville P; Golla-Schindler U; Zhao XQ; Veintemillas-Verdaguer S
    Small; 2006 Dec; 2(12):1476-83. PubMed ID: 17193009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery.
    Zhou L; He B; Zhang F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):192-9. PubMed ID: 22191417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.