BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18561171)

  • 1. Lipophobicity and the residue environments of the transmembrane alpha-helical bundle.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2009 Jan; 74(1):32-49. PubMed ID: 18561171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins.
    Adamian L; Nanda V; DeGrado WF; Liang J
    Proteins; 2005 May; 59(3):496-509. PubMed ID: 15789404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices.
    Senes A; Chadi DC; Law PB; Walters RF; Nanda V; Degrado WF
    J Mol Biol; 2007 Feb; 366(2):436-48. PubMed ID: 17174324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of rotational orientation of transmembrane helical segments of integral membrane proteins using new environment-based propensities for amino acids derived from structural analyses.
    Dastmalchi S; Beheshti S; Morris MB; Church WB
    FEBS J; 2007 May; 274(10):2653-60. PubMed ID: 17451441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural dissection of amino acid substitutions in helical transmembrane proteins.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2010 Nov; 78(14):2895-907. PubMed ID: 20715054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid interaction preferences in helical membrane proteins.
    Jha AN; Vishveshwara S; Banavar JR
    Protein Eng Des Sel; 2011 Aug; 24(8):579-88. PubMed ID: 21666247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues.
    Donnelly D; Overington JP; Ruffle SV; Nugent JH; Blundell TL
    Protein Sci; 1993 Jan; 2(1):55-70. PubMed ID: 8443590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins.
    Beuming T; Weinstein H
    Bioinformatics; 2004 Aug; 20(12):1822-35. PubMed ID: 14988128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales.
    Shaytan AK; Shaitan KV; Khokhlov AR
    Biomacromolecules; 2009 May; 10(5):1224-37. PubMed ID: 19334678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. beta-Barrel transmembrane proteins: Geometric modelling, detection of transmembrane region, and structural properties.
    Valavanis IK; Bagos PG; Emiris IZ
    Comput Biol Chem; 2006 Dec; 30(6):416-24. PubMed ID: 17097352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy.
    Aisenbrey C; Goormaghtigh E; Ruysschaert JM; Bechinger B
    Mol Membr Biol; 2006; 23(4):363-74. PubMed ID: 16923729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis and exposure status classification of transmembrane beta barrel residues.
    Hayat S; Park Y; Helms V
    Comput Biol Chem; 2011 Apr; 35(2):96-107. PubMed ID: 21531175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylglycerol lipids enhance folding of an alpha helical membrane protein.
    Seddon AM; Lorch M; Ces O; Templer RH; Macrae F; Booth PJ
    J Mol Biol; 2008 Jul; 380(3):548-56. PubMed ID: 18565344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lipid composition for insertion and stabilization of amino acids in membranes.
    Johansson AC; Lindahl E
    J Chem Phys; 2009 May; 130(18):185101. PubMed ID: 19449954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titratable amino acid solvation in lipid membranes as a function of protonation state.
    Johansson AC; Lindahl E
    J Phys Chem B; 2009 Jan; 113(1):245-53. PubMed ID: 19118487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific protein-lipid interactions in membrane proteins.
    Hunte C
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):938-42. PubMed ID: 16246015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting membrane protein architecture: An annotation of structural complexity.
    Arce J; Sturgis JN; Duneau JP
    Biopolymers; 2009 Oct; 91(10):815-29. PubMed ID: 19437433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics, stability, and prediction of transmembrane helices.
    Jayasinghe S; Hristova K; White SH
    J Mol Biol; 2001 Oct; 312(5):927-34. PubMed ID: 11580239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.