BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18561171)

  • 21. A knowledge-based scale for amino acid membrane propensity.
    Punta M; Maritan A
    Proteins; 2003 Jan; 50(1):114-21. PubMed ID: 12471604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins.
    Park Y; Helms V
    Bioinformatics; 2007 Mar; 23(6):701-8. PubMed ID: 17237049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Striated domains: self-organizing ordered assemblies of transmembrane alpha-helical peptides and lipids in bilayers.
    de Kruijff B; Killian JA; Ganchev DN; Rinia HA; Sparr E
    Biol Chem; 2006 Mar; 387(3):235-41. PubMed ID: 16542143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A turn propensity scale for transmembrane helices.
    Monné M; Hermansson M; von Heijne G
    J Mol Biol; 1999 Apr; 288(1):141-5. PubMed ID: 10329132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs.
    Chen K; Jiang Y; Du L; Kurgan L
    J Comput Chem; 2009 Jan; 30(1):163-72. PubMed ID: 18567007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrophobicity of transmembrane proteins: spatially profiling the distribution.
    Silverman BD
    Protein Sci; 2003 Mar; 12(3):586-99. PubMed ID: 12592029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fast method for the quantitative estimation of the distribution of hydrophobic and hydrophilic segments in alpha-helices of membrane proteins.
    Luzhkov VB; Surkov NF
    Membr Cell Biol; 2000; 14(1):89-96. PubMed ID: 11051085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetric amino acid compositions of transmembrane beta-strands.
    Chamberlain AK; Bowie JU
    Protein Sci; 2004 Aug; 13(8):2270-4. PubMed ID: 15273317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of residue distribution along the sequence for discriminating outer membrane proteins.
    Gromiha MM; Ahmad S; Suwa M
    Comput Biol Chem; 2005 Apr; 29(2):135-42. PubMed ID: 15833441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Do protein-lipid interactions determine the recognition of transmembrane helices at the ER translocon?
    White SH; von Heijne G
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1012-5. PubMed ID: 16246034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of the membrane-water interface region of membrane proteins.
    Granseth E; von Heijne G; Elofsson A
    J Mol Biol; 2005 Feb; 346(1):377-85. PubMed ID: 15663952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces.
    Hristova K; White SH
    Biochemistry; 2005 Sep; 44(37):12614-9. PubMed ID: 16156674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Major structural determinants of transmembrane proteins identified by principal component analysis.
    Koshi JM; Bruno WJ
    Proteins; 1999 Feb; 34(3):333-40. PubMed ID: 10024020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of membrane protein types by incorporating amphipathic effects.
    Chou KC; Cai YD
    J Chem Inf Model; 2005; 45(2):407-13. PubMed ID: 15807506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the solvent accessibility of transmembrane residues from protein sequence.
    Yuan Z; Zhang F; Davis MJ; Bodén M; Teasdale RD
    J Proteome Res; 2006 May; 5(5):1063-70. PubMed ID: 16674095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophobicity scales: a thermodynamic looking glass into lipid-protein interactions.
    MacCallum JL; Tieleman DP
    Trends Biochem Sci; 2011 Dec; 36(12):653-62. PubMed ID: 21930386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales?
    Peters C; Elofsson A
    Proteins; 2014 Sep; 82(9):2190-8. PubMed ID: 24753217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Method to assess packing quality of transmembrane alpha-helices in proteins. 1. Parametrization using structural data.
    Chugunov AO; Novoseletsky VN; Nolde DE; Arseniev AS; Efremov RG
    J Chem Inf Model; 2007; 47(3):1150-62. PubMed ID: 17371005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide.
    Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG
    J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing four different approaches for the determination of inter-residue interactions provides insight for the structure prediction of helical membrane proteins.
    Gao J; Li Z
    Biopolymers; 2009 Jul; 91(7):547-56. PubMed ID: 19241463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.