These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 1856179)
1. The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. Reidl J; Boos W J Bacteriol; 1991 Aug; 173(15):4862-76. PubMed ID: 1856179 [TBL] [Abstract][Full Text] [Related]
2. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
3. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases. Bouma CL; Roseman S J Biol Chem; 1996 Dec; 271(52):33457-67. PubMed ID: 8969209 [TBL] [Abstract][Full Text] [Related]
4. MalY of Escherichia coli is an enzyme with the activity of a beta C-S lyase (cystathionase). Zdych E; Peist R; Reidl J; Boos W J Bacteriol; 1995 Sep; 177(17):5035-9. PubMed ID: 7665481 [TBL] [Abstract][Full Text] [Related]
5. Network regulation of the Escherichia coli maltose system. Schlegel A; Böhm A; Lee SJ; Peist R; Decker K; Boos W J Mol Microbiol Biotechnol; 2002 May; 4(3):301-7. PubMed ID: 11931562 [TBL] [Abstract][Full Text] [Related]
7. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
8. Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. Zeppenfeld T; Larisch C; Lengeler JW; Jahreis K J Bacteriol; 2000 Aug; 182(16):4443-52. PubMed ID: 10913077 [TBL] [Abstract][Full Text] [Related]
9. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Parker LL; Hall BG Genetics; 1990 Mar; 124(3):455-71. PubMed ID: 2179047 [TBL] [Abstract][Full Text] [Related]
10. Identification of endogenous inducers of the mal regulon in Escherichia coli. Ehrmann M; Boos W J Bacteriol; 1987 Aug; 169(8):3539-45. PubMed ID: 3038842 [TBL] [Abstract][Full Text] [Related]
11. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743 [TBL] [Abstract][Full Text] [Related]
12. Sequence of cloned enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:N-acetylglucosamine phosphotransferase system of Escherichia coli. Peri KG; Waygood EB Biochemistry; 1988 Aug; 27(16):6054-61. PubMed ID: 3056518 [TBL] [Abstract][Full Text] [Related]
13. Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. Decker K; Peist R; Reidl J; Kossmann M; Brand B; Boos W J Bacteriol; 1993 Sep; 175(17):5655-65. PubMed ID: 8366051 [TBL] [Abstract][Full Text] [Related]
14. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Kornberg HL; Lambourne LT; Sproul AA Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase. Rogers MJ; Ohgi T; Plumbridge J; Söll D Gene; 1988; 62(2):197-207. PubMed ID: 3284790 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose. Klein W; Horlacher R; Boos W J Bacteriol; 1995 Jul; 177(14):4043-52. PubMed ID: 7608078 [TBL] [Abstract][Full Text] [Related]
17. Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis. Zagorec M; Postma PW Mol Gen Genet; 1992 Aug; 234(2):325-8. PubMed ID: 1508157 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. Dean DA; Reizer J; Nikaido H; Saier MH J Biol Chem; 1990 Dec; 265(34):21005-10. PubMed ID: 2250006 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. Peist R; Koch A; Bolek P; Sewitz S; Kolbus T; Boos W J Bacteriol; 1997 Dec; 179(24):7679-86. PubMed ID: 9401025 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the sequences of the nagE operons from Klebsiella pneumoniae and Escherichia coli K12: enhanced variability of the enzyme IIN-acetylglucosamine in regions connecting functional domains. Vogler AP; Lengeler JW Mol Gen Genet; 1991 Nov; 230(1-2):270-6. PubMed ID: 1745234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]