BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 18561941)

  • 21. Nucleation at surfaces: the importance of interfacial energy.
    Wu W; Gerard DE; Nancollas GH
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S355-8. PubMed ID: 10541263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supersaturation of zafirlukast in fasted and fed state intestinal media with and without precipitation inhibitors.
    Madsen CM; Boyd B; Rades T; Müllertz A
    Eur J Pharm Sci; 2016 Aug; 91():31-9. PubMed ID: 27260089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleation of protein crystals under the influence of solution shear flow.
    Penkova A; Pan W; Hodjaoglu F; Vekilov PG
    Ann N Y Acad Sci; 2006 Sep; 1077():214-31. PubMed ID: 17124126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of Crystal Nucleation and Growth in Aqueous Drug Solutions: Impact of Different Polymers on the Supersaturation Profiles of Amorphous Drugs-The Case of Alpha-Mangostin.
    Budiman A; Citraloka ZG; Muchtaridi M; Sriwidodo S; Aulifa DL; Rusdin A
    Pharmaceutics; 2022 Nov; 14(11):. PubMed ID: 36365204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liquid antisolvent precipitation process for solubility modulation of bicalutamide.
    Meer TA; Sawant KP; Amin PD
    Acta Pharm; 2011 Dec; 61(4):435-45. PubMed ID: 22202202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of polyethylene glycol-400 at low concentrations on long-term growth of muscle phosphoglucomutase crystals from concentrated salt solutions.
    Ray WJ
    Proteins; 1992 Oct; 14(2):300-8. PubMed ID: 1409576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.
    Neira-Carrillo A; Acevedo DF; Miras MC; Barbero CA; Gebauer D; Cölfen H; Arias JL
    Langmuir; 2008 Nov; 24(21):12496-507. PubMed ID: 18839967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced dissolution of solid dispersions containing bicalutamide subjected to mechanical stress.
    Szafraniec J; Antosik A; Knapik-Kowalczuk J; Chmiel K; Kurek M; Gawlak K; Paluch M; Jachowicz R
    Int J Pharm; 2018 May; 542(1-2):18-26. PubMed ID: 29481948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine.
    Konno H; Handa T; Alonzo DE; Taylor LS
    Eur J Pharm Biopharm; 2008 Oct; 70(2):493-9. PubMed ID: 18577451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth.
    Lindfors L; Skantze P; Skantze U; Westergren J; Olsson U
    Langmuir; 2007 Sep; 23(19):9866-74. PubMed ID: 17696457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beneficial effect of solubility enhancers on protein crystal nucleation and growth.
    Gosavi RA; Bhamidi V; Varanasi S; Schall CA
    Langmuir; 2009 Apr; 25(8):4579-87. PubMed ID: 19309115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on the interactions between polyvinylpyrrolidone (PVP) and acetaminophen crystals: partial dissolution pattern change.
    Wen H; Morris KR; Park K
    J Pharm Sci; 2005 Oct; 94(10):2166-74. PubMed ID: 16136578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The assessment of the relaxation behaviour of frozen aqueous solutions of human serum albumin and polyvinylpyrrolidine.
    Barker SA
    Eur J Pharm Biopharm; 2004 May; 57(3):431-9. PubMed ID: 15093590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymorph transitions of bicalutamide: a remarkable example of mechanical activation.
    Német Z; Sztatisz J; Demeter A
    J Pharm Sci; 2008 Aug; 97(8):3222-32. PubMed ID: 18085711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles.
    Fini A; Cavallari C; Ospitali F
    Eur J Pharm Biopharm; 2008 Sep; 70(1):409-20. PubMed ID: 18621516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The two-step mechanism of nucleation of crystals in solution.
    Vekilov PG
    Nanoscale; 2010 Nov; 2(11):2346-57. PubMed ID: 20936214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous nucleation of three-dimensional protein nanocrystals.
    Georgieva DG; Kuil ME; Oosterkamp TH; Zandbergen HW; Abrahams JP
    Acta Crystallogr D Biol Crystallogr; 2007 May; 63(Pt 5):564-70. PubMed ID: 17452781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure.
    Kadri A; Lorber B; Charron C; Robert MC; Capelle B; Damak M; Jenner G; Giegé R
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):784-8. PubMed ID: 15930640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):94-105. PubMed ID: 17981448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state.
    Crowley KJ; Zografi G
    Pharm Res; 2003 Sep; 20(9):1417-22. PubMed ID: 14567636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.