These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18562039)

  • 1. A Bayesian regression approach to the prediction of MHC-II binding affinity.
    Zhang W; Liu J; Niu YQ; Wang L; Hu X
    Comput Methods Programs Biomed; 2008 Oct; 92(1):1-7. PubMed ID: 18562039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative prediction of MHC-II binding affinity using particle swarm optimization.
    Zhang W; Liu J; Niu Y
    Artif Intell Med; 2010 Oct; 50(2):127-32. PubMed ID: 20541921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive Bayesian neural network models of MHC class II peptide binding.
    Burden FR; Winkler DA
    J Mol Graph Model; 2005 Jun; 23(6):481-9. PubMed ID: 15878832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient peptide-MHC-I binding prediction for alleles with few known binders.
    Jacob L; Vert JP
    Bioinformatics; 2008 Feb; 24(3):358-66. PubMed ID: 18083718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks.
    Winkler DA; Burden FR
    Methods Mol Biol; 2007; 409():365-77. PubMed ID: 18450015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Locally Linear Embedding and Wavelet Transform based encoding method for prediction of MHC-II binding affinity.
    Liu J; Li QJ; Zhang W
    Interdiscip Sci; 2010 Jun; 2(2):145-50. PubMed ID: 20640782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods and protocols for prediction of immunogenic epitopes.
    Tong JC; Tan TW; Ranganathan S
    Brief Bioinform; 2007 Mar; 8(2):96-108. PubMed ID: 17077136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Ras-effector interactions using position energy matrices.
    Kiel C; Serrano L
    Bioinformatics; 2007 Sep; 23(17):2226-30. PubMed ID: 17599936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides.
    Tong JC; Zhang GL; Tan TW; August JT; Brusic V; Ranganathan S
    Bioinformatics; 2006 May; 22(10):1232-8. PubMed ID: 16510499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAPPP: MHC class I antigenic peptide processing prediction.
    Hakenberg J; Nussbaum AK; Schild H; Rammensee HG; Kuttler C; Holzhütter HG; Kloetzel PM; Kaufmann SH; Mollenkopf HJ
    Appl Bioinformatics; 2003; 2(3):155-8. PubMed ID: 15130801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class II HLA-peptide binding prediction using structural principles.
    Mohanapriya A; Lulu S; Kayathri R; Kangueane P
    Hum Immunol; 2009 Mar; 70(3):159-69. PubMed ID: 19187794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A regularized discriminative model for the prediction of protein-peptide interactions.
    Lehrach WP; Husmeier D; Williams CK
    Bioinformatics; 2006 Mar; 22(5):532-40. PubMed ID: 16397010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization.
    Rabinowitz M; Myers L; Banjevic M; Chan A; Sweetkind-Singer J; Haberer J; McCann K; Wolkowicz R
    Bioinformatics; 2006 Mar; 22(5):541-9. PubMed ID: 16368772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.