These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18562114)

  • 21. A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Lee J; Soper SA; Murray KK
    Rapid Commun Mass Spectrom; 2011 Mar; 25(6):693-9. PubMed ID: 21337630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A world-to-chip interface for digital microfluidics.
    Yang H; Luk VN; Abelgawad M; Barbulovic-Nad I; Wheeler AR
    Anal Chem; 2009 Feb; 81(3):1061-7. PubMed ID: 19115860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with MALDI-TOF mass spectrometry.
    Nichols KP; Gardeniers HJ
    Anal Chem; 2007 Nov; 79(22):8699-704. PubMed ID: 17953451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile fabrication of an interface for online coupling of microchip CE to surface plasmon resonance.
    Liu X; Du M; Zhou F; Gomez FA
    Bioanalysis; 2012 Feb; 4(4):373-9. PubMed ID: 22394138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of an on-target sample preparation system for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in conjunction with normal-flow peptide high-performance liquid chromatography for peptide mass fingerprint analyses.
    McComb ME; Perlman DH; Huang H; Costello CE
    Rapid Commun Mass Spectrom; 2007; 21(1):44-58. PubMed ID: 17133622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ fabrication of a microfluidic device for immobilised metal affinity sensing.
    Deshpande AG; Darton NJ; Yunus K; Fisher AC; Slater NK
    N Biotechnol; 2012 May; 29(4):494-501. PubMed ID: 22341688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Miniaturized solid-phase extraction and sample preparation for MALDI MS using a microfabricated integrated selective enrichment target.
    Ekström S; Wallman L; Hök D; Marko-Varga G; Laurell T
    J Proteome Res; 2006 May; 5(5):1071-81. PubMed ID: 16674096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in microfluidics combined with mass spectrometry: technologies and applications.
    Gao D; Liu H; Jiang Y; Lin JM
    Lab Chip; 2013 Sep; 13(17):3309-22. PubMed ID: 23824006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic cell disruption system employing a magnetically actuated diaphragm.
    Huh YS; Choi JH; Huh KA; Park TJ; Hong YK; Kim DH; Hong WH; Lee SY
    Electrophoresis; 2007 Dec; 28(24):4748-57. PubMed ID: 18008309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards real time analysis of protein secretion from single cells.
    Kortmann H; Kurth F; Blank LM; Dittrich PS; Schmid A
    Lab Chip; 2009 Nov; 9(21):3047-9. PubMed ID: 19823717
    [No Abstract]   [Full Text] [Related]  

  • 31. High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device.
    Lapierre F; Piret G; Drobecq H; Melnyk O; Coffinier Y; Thomy V; Boukherroub R
    Lab Chip; 2011 May; 11(9):1620-8. PubMed ID: 21423926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing.
    Yu H; Lu Y; Zhou YG; Wang FB; He FY; Xia XH
    Lab Chip; 2008 Sep; 8(9):1496-501. PubMed ID: 18818804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels.
    Becker M; Marggraf U; Janasek D
    J Chromatogr A; 2009 Nov; 1216(47):8265-9. PubMed ID: 19631324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid Detection of Microbial Contamination Using a Microfluidic Device.
    Al-Adhami M; Tilahun D; Rao G; Gurramkonda C; Kostov Y
    Methods Mol Biol; 2017; 1571():287-299. PubMed ID: 28281263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance.
    Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H
    Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A digital microfluidic approach to proteomic sample processing.
    Luk VN; Wheeler AR
    Anal Chem; 2009 Jun; 81(11):4524-30. PubMed ID: 19476392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A MALDI-chip integrated system with a monitoring window.
    Brivio M; Tas NR; Goedbloed MH; Gardeniers HJ; Verboom W; van den Berg A; Reinhoudt DN
    Lab Chip; 2005 Apr; 5(4):378-81. PubMed ID: 15791334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multistep microreactions with proteins using electrocapture technology.
    Astorga-Wells J; Bergman T; Jörnvall H
    Anal Chem; 2004 May; 76(9):2425-9. PubMed ID: 15117179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of endothelial proteins by MALDI-MS using a compact disc microfluidic system.
    Hirschberg D; Tryggvason S; Gustafsson M; Bergman T; Swedenborg J; Hedin U; Jörnvall H
    Protein J; 2004 May; 23(4):263-71. PubMed ID: 15214497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.