BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18562320)

  • 1. Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells.
    Camacho M; Machado JD; Alvarez J; Borges R
    J Biol Chem; 2008 Aug; 283(33):22383-9. PubMed ID: 18562320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of intravesicular calcium in the motion and exocytosis of secretory organelles.
    Machado JD; Camacho M; Alvarez J; Borges R
    Commun Integr Biol; 2009; 2(2):71-3. PubMed ID: 19704891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells.
    Camacho M; Machado JD; Montesinos MS; Criado M; Borges R
    J Neurochem; 2006 Jan; 96(2):324-34. PubMed ID: 16336635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicular Ca(2+) -induced secretion promoted by intracellular pH-gradient disruption.
    Haynes CL; Buhler LA; Wightman RM
    Biophys Chem; 2006 Aug; 123(1):20-4. PubMed ID: 16678962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular Ca(2+) mediates granule motion and exocytosis.
    Borges R; Domínguez N; Estévez-Herrera J; Pereda D; Machado JD
    Cell Calcium; 2012; 51(3-4):338-41. PubMed ID: 22222091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation-dependent regulation of the pH, volume and quantal size of bovine and rodent secretory vesicles.
    Pothos EN; Mosharov E; Liu KP; Setlik W; Haburcak M; Baldini G; Gershon MD; Tamir H; Sulzer D
    J Physiol; 2002 Jul; 542(Pt 2):453-76. PubMed ID: 12122145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydralazine reduces the quantal size of secretory events by displacement of catecholamines from adrenomedullary chromaffin secretory vesicles.
    Machado JD; Gómez JF; Betancor G; Camacho M; Brioso MA; Borges R
    Circ Res; 2002 Nov; 91(9):830-6. PubMed ID: 12411398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of H+-ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function.
    Taupenot L; Harper KL; O'Connor DT
    J Biol Chem; 2005 Feb; 280(5):3885-97. PubMed ID: 15542860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravesicular factors controlling exocytosis in chromaffin cells.
    Borges R; Pereda D; Beltrán B; Prunell M; Rodríguez M; Machado JD
    Cell Mol Neurobiol; 2010 Nov; 30(8):1359-64. PubMed ID: 21046452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamic pool of calcium in catecholamine storage vesicles. Exploration in living cells by a novel vesicle-targeted chromogranin A-aequorin chimeric photoprotein.
    Mahapatra NR; Mahata M; Hazra PP; McDonough PM; O'Connor DT; Mahata SK
    J Biol Chem; 2004 Dec; 279(49):51107-21. PubMed ID: 15358782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine phosphorylation regulates rapid endocytosis in adrenal chromaffin cells.
    Nucifora PG; Fox AP
    J Neurosci; 1999 Nov; 19(22):9739-46. PubMed ID: 10559383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla.
    Kishimoto T; Kimura R; Liu TT; Nemoto T; Takahashi N; Kasai H
    EMBO J; 2006 Feb; 25(4):673-82. PubMed ID: 16467850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells.
    Mundorf ML; Hochstetler SE; Wightman RM
    J Neurochem; 1999 Dec; 73(6):2397-405. PubMed ID: 10582599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells.
    Perrais D; Kleppe IC; Taraska JW; Almers W
    J Physiol; 2004 Oct; 560(Pt 2):413-28. PubMed ID: 15297569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Punctate appearance of dopamine-beta-hydroxylase on the chromaffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis.
    Wick PF; Trenkle JM; Holz RW
    Neuroscience; 1997 Oct; 80(3):847-60. PubMed ID: 9276499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices.
    Moser T; Neher E
    J Neurosci; 1997 Apr; 17(7):2314-23. PubMed ID: 9065492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catecholamine secretion from bovine adrenal chromaffin cells: the role of the Na+/Ca2+ exchanger and the intracellular Ca2+ pool.
    Pan CY; Kao LS
    J Neurochem; 1997 Sep; 69(3):1085-92. PubMed ID: 9282931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term changes in the Ca2+-exocytosis relationship during repetitive pulse protocols in bovine adrenal chromaffin cells.
    Engisch KL; Chernevskaya NI; Nowycky MC
    J Neurosci; 1997 Dec; 17(23):9010-25. PubMed ID: 9364048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.