BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18562321)

  • 1. Guanine nucleotide exchange factor independence of the G-protein eEF1A through novel mutant forms and biochemical properties.
    Ozturk SB; Kinzy TG
    J Biol Chem; 2008 Aug; 283(34):23244-53. PubMed ID: 18562321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in a GTP-binding motif of eukaryotic elongation factor 1A reduce both translational fidelity and the requirement for nucleotide exchange.
    Carr-Schmid A; Durko N; Cavallius J; Merrick WC; Kinzy TG
    J Biol Chem; 1999 Oct; 274(42):30297-302. PubMed ID: 10514524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique classes of mutations in the Saccharomyces cerevisiae G-protein translation elongation factor 1A suppress the requirement for guanine nucleotide exchange.
    Ozturk SB; Vishnu MR; Olarewaju O; Starita LM; Masison DC; Kinzy TG
    Genetics; 2006 Oct; 174(2):651-63. PubMed ID: 16951075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha.
    Pittman YR; Kandl K; Lewis M; Valente L; Kinzy TG
    J Biol Chem; 2009 Feb; 284(7):4739-47. PubMed ID: 19095653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mg2+ and a key lysine modulate exchange activity of eukaryotic translation elongation factor 1B alpha.
    Pittman YR; Valente L; Jeppesen MG; Andersen GR; Patel S; Kinzy TG
    J Biol Chem; 2006 Jul; 281(28):19457-68. PubMed ID: 16675455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.
    Trosiuk TV; Shalak VF; Szczepanowski RH; Negrutskii BS; El'skaya AV
    FEBS J; 2016 Feb; 283(3):484-97. PubMed ID: 26587907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA.
    Gromadski KB; Schümmer T; Strømgaard A; Knudsen CR; Kinzy TG; Rodnina MV
    J Biol Chem; 2007 Dec; 282(49):35629-37. PubMed ID: 17925388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis reveals potential phosphorylation sites in eukaryotic elongation factor 1A that are important for its activity.
    Mateyak MK; He D; Sharma P; Kinzy TG
    FEBS Lett; 2021 Sep; 595(17):2208-2220. PubMed ID: 34293820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of a conserved CDK site converts a metazoan Elongation Factor 1Bbeta subunit into a replacement for yeast eEF1Balpha.
    Pomerening JR; Valente L; Kinzy TG; Jacobs TW
    Mol Genet Genomics; 2003 Sep; 269(6):776-88. PubMed ID: 12898219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel intermediate of Rac GTPase activation by guanine nucleotide exchange factor.
    Zhang B; Yang L; Zheng Y
    Biochem Biophys Res Commun; 2005 Jun; 331(2):413-21. PubMed ID: 15850775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein.
    Dholakia JN; Wahba AJ
    J Biol Chem; 1989 Jan; 264(1):546-50. PubMed ID: 2491852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.
    Zhang B; Zhang Y; Wang Z; Zheng Y
    J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quaternary organization of the human eEF1B complex reveals unique multi-GEF domain assembly.
    Bondarchuk TV; Shalak VF; Lozhko DM; Fatalska A; Szczepanowski RH; Liudkovska V; Tsuvariev OY; Dadlez M; El'skaya AV; Negrutskii BS
    Nucleic Acids Res; 2022 Sep; 50(16):9490-9504. PubMed ID: 35971611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Balpha complex.
    Andersen GR; Valente L; Pedersen L; Kinzy TG; Nyborg J
    Nat Struct Biol; 2001 Jun; 8(6):531-4. PubMed ID: 11373622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of yeast eEF1A. Viable mutants with altered nucleotide specificity.
    Cavallius J; Merrick WC
    J Biol Chem; 1998 Oct; 273(44):28752-8. PubMed ID: 9786872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.
    Ren Y; Li R; Zheng Y; Busch H
    J Biol Chem; 1998 Dec; 273(52):34954-60. PubMed ID: 9857026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the conserved switch II glutamate in guanine nucleotide exchange factor-mediated nucleotide exchange of GTP-binding proteins.
    Gasper R; Thomas C; Ahmadian MR; Wittinghofer A
    J Mol Biol; 2008 May; 379(1):51-63. PubMed ID: 18440551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of the ran-RCC1 interaction using biochemical and docking experiments.
    Azuma Y; Renault L; García-Ranea JA; Valencia A; Nishimoto T; Wittinghofer A
    J Mol Biol; 1999 Jun; 289(4):1119-30. PubMed ID: 10369786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction.
    Rebhun JF; Castro AF; Quilliam LA
    J Biol Chem; 2000 Nov; 275(45):34901-8. PubMed ID: 10934204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.