These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 1856238)

  • 1. Development of a three-dimensional finite element model of a human tibia using experimental modal analysis.
    Hobatho MC; Darmana R; Pastor P; Barrau JJ; Laroze S; Morucci JP
    J Biomech; 1991; 24(6):371-83. PubMed ID: 1856238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transversely isotropic and isotropic material considerations in determining the mechanical response of geometrically accurate bovine tibia bone.
    Yassine RA; Hamade RF
    Med Biol Eng Comput; 2019 Oct; 57(10):2159-2178. PubMed ID: 31377963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling human tibia structural vibrations.
    Thomsen JJ
    J Biomech; 1990; 23(3):215-28. PubMed ID: 2324118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method.
    Tsuchikane A; Nakatsuchi Y; Nomura A
    Proc Inst Mech Eng H; 1995; 209(3):149-55. PubMed ID: 8519403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of in-vivo vibration modes of human tibiae by modal analysis.
    Van der Perre G; Van Audekercke R; Martens M; Mulier JC
    J Biomech Eng; 1983 Aug; 105(3):244-8. PubMed ID: 6632826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of blood in veins of dragonfly wing on the vibration characteristics.
    Hou D; Yin Y; Zhao H; Zhong Z
    Comput Biol Med; 2015 Mar; 58():14-9. PubMed ID: 25577611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of tibial stiffness by vibration testing in situ--I. Identification of mode shapes in different supporting conditions.
    Christensen AB; Ammitzbøll F; Dyrbye C; Cornelissen M; Cornelissen P; Van der Perre G
    J Biomech; 1986; 19(1):53-60. PubMed ID: 3949816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models.
    Guo LX; Teo EC
    Proc Inst Mech Eng H; 2005 Jul; 219(4):277-84. PubMed ID: 16050218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of tibial stiffness by vibration testing in situ--II. Influence of soft tissues, joints and fibula.
    Cornelissen P; Cornelissen M; Van der Perre G; Christensen AB; Ammitzbøll F; Dyrbye C
    J Biomech; 1986; 19(7):551-61. PubMed ID: 3745226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum.
    Funnell WR
    J Acoust Soc Am; 1983 May; 73(5):1657-61. PubMed ID: 6863742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of a continuum vocal fold model to geometric parameters, constraints, and boundary conditions.
    Cook DD; Mongeau L
    J Acoust Soc Am; 2007 Apr; 121(4):2247-53. PubMed ID: 17471738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling and modal analysis of the human spine vibration configuration.
    Guo LX; Zhang YM; Zhang M
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2987-90. PubMed ID: 21693412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modal and temporal analysis of head mathematical models.
    Willinger R; Taleb L; Kopp CM
    J Neurotrauma; 1995 Aug; 12(4):743-54. PubMed ID: 8683626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Operativity Evaluation of Strategic Buildings Through Finite Element (FE) Models Validated by Operational Modal Analysis (OMA).
    Foti D; Giannoccaro NI; Vacca V; Lerna M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration measurements predict the mechanical properties of human tibia.
    Bediz B; Nevzat Ozgüven H; Korkusuz F
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):365-71. PubMed ID: 20110142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs.
    Zanetti EM; Ciaramella S; Calì M; Pascoletti G; Martorelli M; Asero R; Watts DC
    Dent Mater; 2018 Aug; 34(8):1235-1245. PubMed ID: 29891196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and experimental validation of a finite element model of total ankle replacement.
    Terrier A; Larrea X; Guerdat J; Crevoisier X
    J Biomech; 2014 Feb; 47(3):742-5. PubMed ID: 24393809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of density-elasticity relationships for finite element modeling of human pelvic bone by modal analysis.
    Scholz R; Hoffmann F; von Sachsen S; Drossel WG; Klöhn C; Voigt C
    J Biomech; 2013 Oct; 46(15):2667-73. PubMed ID: 24001928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.