BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18562547)

  • 1. Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae.
    Thirumalai V; Cline HT
    J Neurophysiol; 2008 Sep; 100(3):1635-48. PubMed ID: 18562547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying the endogenous dopaminergic inhibition of spinal locomotor circuit function in Xenopus tadpoles.
    Picton LD; Sillar KT
    Sci Rep; 2016 Oct; 6():35749. PubMed ID: 27760989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae.
    Souza BR; Romano-Silva MA; Tropepe V
    J Neurosci; 2011 Apr; 31(14):5512-25. PubMed ID: 21471388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous and exogenous dopamine presynaptically inhibits glutamatergic reticulospinal transmission via an action of D2-receptors on N-type Ca2+ channels.
    Svensson E; Wikström MA; Hill RH; Grillner S
    Eur J Neurosci; 2003 Feb; 17(3):447-54. PubMed ID: 12581163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing modulatory effects of D1- and D2-like receptor activation on a spinal central pattern generator.
    Clemens S; Belin-Rauscent A; Simmers J; Combes D
    J Neurophysiol; 2012 Apr; 107(8):2250-9. PubMed ID: 22262823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization.
    Wiggin TD; Anderson TM; Eian J; Peck JH; Masino MA
    J Neurophysiol; 2012 Aug; 108(3):925-34. PubMed ID: 22572943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of motor but not anxiety-like behavior caused by the increase of dopamine during development is sustained in zebrafish larvae at later stages.
    de Souza Lima ACM; de Alvarenga KAF; Codo BC; Sacramento EK; Rosa DVF; Souza RP; Romano-Silva MA; Souza BR
    Int J Dev Neurosci; 2020 Apr; 80(2):106-122. PubMed ID: 31990423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods.
    Brustein E; Chong M; Holmqvist B; Drapeau P
    J Neurobiol; 2003 Dec; 57(3):303-22. PubMed ID: 14608665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles.
    Reith CA; Sillar KT
    J Neurophysiol; 1999 Dec; 82(6):3175-87. PubMed ID: 10601451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of stress on social behavior in adult zebrafish (Danio rerio).
    Saszik SM; Smith CM
    Behav Pharmacol; 2018 Feb; 29(1):53-59. PubMed ID: 28926343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish.
    Satou C; Kimura Y; Kohashi T; Horikawa K; Takeda H; Oda Y; Higashijima S
    J Neurosci; 2009 May; 29(21):6780-93. PubMed ID: 19474306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of a spinal locomotor network by metabotropic glutamate receptors.
    Chapman RJ; Sillar KT
    Eur J Neurosci; 2007 Oct; 26(8):2257-68. PubMed ID: 17894819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromodulatory Selection of Motor Neuron Recruitment Patterns in a Visuomotor Behavior Increases Speed.
    Jha U; Thirumalai V
    Curr Biol; 2020 Mar; 30(5):788-801.e3. PubMed ID: 32084402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors.
    Tamae A; Nakatsuka T; Koga K; Kato G; Furue H; Katafuchi T; Yoshimura M
    J Physiol; 2005 Oct; 568(Pt 1):243-53. PubMed ID: 15975975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles.
    Currie SP; Combes D; Scott NW; Simmers J; Sillar KT
    J Neurophysiol; 2016 Mar; 115(3):1446-57. PubMed ID: 26763775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.