These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 18562630)
21. The tubular hypothesis of nephron filtration and diabetic kidney disease. Vallon V; Thomson SC Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499 [TBL] [Abstract][Full Text] [Related]
22. The salt paradox of the early diabetic kidney is independent of renal innervation. Birk C; Richter K; Huang DY; Piesch C; Luippold G; Vallon V Kidney Blood Press Res; 2003; 26(5-6):344-50. PubMed ID: 14610339 [TBL] [Abstract][Full Text] [Related]
23. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844 [TBL] [Abstract][Full Text] [Related]
24. Increased expression of ornithine decarboxylase in distal tubules of early diabetic rat kidneys: are polyamines paracrine hypertrophic factors? Deng A; Munger KA; Valdivielso JM; Satriano J; Lortie M; Blantz RC; Thomson SC Diabetes; 2003 May; 52(5):1235-9. PubMed ID: 12716758 [TBL] [Abstract][Full Text] [Related]
25. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Lau C; Sudbury I; Thomson M; Howard PL; Magil AB; Cupples WA Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1761-70. PubMed ID: 19339676 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of renal ornithine decarboxylase activity prevents kidney hypertrophy in experimental diabetes. Pedersen SB; Flyvbjerg A; Richelsen B Am J Physiol; 1993 Feb; 264(2 Pt 1):C453-6. PubMed ID: 8447376 [TBL] [Abstract][Full Text] [Related]
27. Role of nitric oxide in tubuloglomerular feedback: effects of dietary salt. Welch WJ; Wilcox CS Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):582-6. PubMed ID: 9269531 [TBL] [Abstract][Full Text] [Related]
28. Increased tubuloglomerular feed-back mediated suppression of glomerular filtration during acute volume expansion in rats. Davis JM; Häberle DA; Kawata T; Schmitt E; Takabatake T; Wohlfeil S J Physiol; 1988 Jan; 395():553-76. PubMed ID: 2970538 [TBL] [Abstract][Full Text] [Related]
31. Modulation of single-nephron GFR in the db/db mouse model of type 2 diabetes mellitus. II. Effects of renal mass reduction. Levine DZ; Iacovitti M; Robertson SJ Am J Physiol Regul Integr Comp Physiol; 2008 Jun; 294(6):R1840-6. PubMed ID: 18417648 [TBL] [Abstract][Full Text] [Related]
32. Maleate induced fall of glomerular filtration rate. A micropuncture study in the rat. Leser KH; Osswald H Naunyn Schmiedebergs Arch Pharmacol; 1985 Nov; 331(2-3):253-9. PubMed ID: 4088323 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of glomerulotubular balance in the setting of heterogeneous glomerular injury. Preservation of a close functional linkage between individual nephrons and surrounding microvasculature. Ichikawa I; Hoyer JR; Seiler MW; Brenner BM J Clin Invest; 1982 Jan; 69(1):185-98. PubMed ID: 7054238 [TBL] [Abstract][Full Text] [Related]
34. Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. Vallon V; Blantz RC; Thomson S J Am Soc Nephrol; 2003 Feb; 14(2):530-7. PubMed ID: 12538755 [TBL] [Abstract][Full Text] [Related]
35. Ecto-5'-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Huang DY; Vallon V; Zimmermann H; Koszalka P; Schrader J; Osswald H Am J Physiol Renal Physiol; 2006 Aug; 291(2):F282-8. PubMed ID: 16525161 [TBL] [Abstract][Full Text] [Related]
36. Glomerular filtration rate in early diabetes: ongoing discussions of causes and mechanisms. Frische S J Nephrol; 2011; 24(5):537-40. PubMed ID: 21887674 [TBL] [Abstract][Full Text] [Related]
37. [Glomerulo-tubular balance in diabetes mellitus: molecular evidence and clinical consequences]. Evangelista C; Rizzo M; Cantone A; Corbo G; Di Donato L; Trocino C; Zacchia M; Capasso G G Ital Nefrol; 2006; 23 Suppl 34():S16-20. PubMed ID: 16633989 [TBL] [Abstract][Full Text] [Related]
38. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Vallon V; Thomson SC Annu Rev Physiol; 2012; 74():351-75. PubMed ID: 22335797 [TBL] [Abstract][Full Text] [Related]
39. Increased susceptibility to hypertensive renal disease in streptozotocin-treated diabetic rats is not modulated by salt intake. Sima CA; Koeners MP; Joles JA; Braam B; Magil AB; Cupples WA Diabetologia; 2012 Aug; 55(8):2246-55. PubMed ID: 22562180 [TBL] [Abstract][Full Text] [Related]
40. L-arginine-induced glomerular hyperfiltration response: the roles of insulin and ANG II. Ruiz M; Singh P; Thomson SC; Munger K; Blantz RC; Gabbai FB Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1744-51. PubMed ID: 18353876 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]