These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 18562665)
21. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Larièpe A; Mangin B; Jasson S; Combes V; Dumas F; Jamin P; Lariagon C; Jolivot D; Madur D; Fiévet J; Gallais A; Dubreuil P; Charcosset A; Moreau L Genetics; 2012 Feb; 190(2):795-811. PubMed ID: 22135356 [TBL] [Abstract][Full Text] [Related]
22. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Shang L; Liang Q; Wang Y; Zhao Y; Wang K; Hua J Theor Appl Genet; 2016 Jul; 129(7):1429-1446. PubMed ID: 27138784 [TBL] [Abstract][Full Text] [Related]
23. Genetic Analysis of Heterosis for Yield Influencing Traits in Aakanksha ; Yadava SK; Yadav BG; Gupta V; Mukhopadhyay A; Pental D; Pradhan AK Front Plant Sci; 2021; 12():721631. PubMed ID: 34603351 [TBL] [Abstract][Full Text] [Related]
24. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Ma L; Wang Y; Ijaz B; Hua J Sci Rep; 2019 Mar; 9(1):3984. PubMed ID: 30850683 [TBL] [Abstract][Full Text] [Related]
25. Genetic dissection of heterosis of indica-japonica by introgression line, recombinant inbred line and their testcross populations. Yang W; Zhang F; Zafar S; Wang J; Lu H; Naveed S; Lou J; Xu J Sci Rep; 2021 May; 11(1):10265. PubMed ID: 33986411 [TBL] [Abstract][Full Text] [Related]
26. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Li X; Li X; Fridman E; Tesso TT; Yu J Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11823-8. PubMed ID: 26351684 [TBL] [Abstract][Full Text] [Related]
27. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Garcia AA; Wang S; Melchinger AE; Zeng ZB Genetics; 2008 Nov; 180(3):1707-24. PubMed ID: 18791260 [TBL] [Abstract][Full Text] [Related]
28. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. Luo X; Fu Y; Zhang P; Wu S; Tian F; Liu J; Zhu Z; Yang J; Sun C J Integr Plant Biol; 2009 Apr; 51(4):393-408. PubMed ID: 21452591 [TBL] [Abstract][Full Text] [Related]
29. Genetic dissection of heterotic loci associated with plant weight by Graded pool-seq in heading Chinese cabbage (Brassica rapa). Yue L; Sun R; Li G; Cheng F; Gao L; Wang Q; Zhang S; Zhang H; Zhang S; Li F Planta; 2022 May; 255(6):126. PubMed ID: 35575830 [TBL] [Abstract][Full Text] [Related]
30. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Frascaroli E; Canè MA; Landi P; Pea G; Gianfranceschi L; Villa M; Morgante M; Pè ME Genetics; 2007 May; 176(1):625-44. PubMed ID: 17339211 [TBL] [Abstract][Full Text] [Related]
31. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.). Li ZK; Jiang XL; Peng T; Shi CL; Han SX; Tian B; Zhu ZL; Tian JC Genet Mol Res; 2014 Feb; 13(1):1412-24. PubMed ID: 24634240 [TBL] [Abstract][Full Text] [Related]
32. [Molecular mapping and identification of quantitative trait loci for yield components in rapeseed (Brasscia napus L.)]. Wang F; Guan CY Yi Chuan; 2010 Mar; 32(3):271-7. PubMed ID: 20233705 [TBL] [Abstract][Full Text] [Related]
33. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Zhang L; Li S; Chen L; Yang G Theor Appl Genet; 2012 Aug; 125(4):695-705. PubMed ID: 22487878 [TBL] [Abstract][Full Text] [Related]
34. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Hua J; Xing Y; Wu W; Xu C; Sun X; Yu S; Zhang Q Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2574-9. PubMed ID: 12604771 [TBL] [Abstract][Full Text] [Related]
35. Genetic basis of grain yield heterosis in an "immortalized F₂" maize population. Guo T; Yang N; Tong H; Pan Q; Yang X; Tang J; Wang J; Li J; Yan J Theor Appl Genet; 2014 Oct; 127(10):2149-58. PubMed ID: 25104328 [TBL] [Abstract][Full Text] [Related]
36. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Chen W; Zhang Y; Liu X; Chen B; Tu J; Tingdong F Theor Appl Genet; 2007 Oct; 115(6):849-58. PubMed ID: 17665168 [TBL] [Abstract][Full Text] [Related]
37. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Chen X; Li M; Shi J; Fu D; Qian W; Zou J; Zhang C; Meng J Theor Appl Genet; 2008 Nov; 117(7):1031-40. PubMed ID: 18754099 [TBL] [Abstract][Full Text] [Related]
38. The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Melchinger AE; Utz HF; Piepho HP; Zeng ZB; Schön CC Genetics; 2007 Nov; 177(3):1815-25. PubMed ID: 18039883 [TBL] [Abstract][Full Text] [Related]
39. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Lu H; Romero-Severson J; Bernardo R Theor Appl Genet; 2003 Aug; 107(3):494-502. PubMed ID: 12759730 [TBL] [Abstract][Full Text] [Related]
40. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Udall JA; Quijada PA; Lambert B; Osborn TC Theor Appl Genet; 2006 Aug; 113(4):597-609. PubMed ID: 16767446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]