These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18563088)

  • 1. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards.
    Burke KA; Franz TM; Miller DN; Schoenbaum G
    Nature; 2008 Jul; 454(7202):340-4. PubMed ID: 18563088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates.
    Pears A; Parkinson JA; Hopewell L; Everitt BJ; Roberts AC
    J Neurosci; 2003 Dec; 23(35):11189-201. PubMed ID: 14657178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditioned reinforcement can be mediated by either outcome-specific or general affective representations.
    Burke KA; Franz TM; Miller DN; Schoenbaum G
    Front Integr Neurosci; 2007; 1():2. PubMed ID: 18958230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value.
    Winter S; Dieckmann M; Schwabe K
    Behav Brain Res; 2009 Mar; 198(1):206-13. PubMed ID: 19041903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Medial Orbitofrontal Cortex-Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice.
    Lichtenberg NT; Sepe-Forrest L; Pennington ZT; Lamparelli AC; Greenfield VY; Wassum KM
    J Neurosci; 2021 Aug; 41(34):7267-7277. PubMed ID: 34272313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The medial orbitofrontal cortex encodes a general unsigned value signal during anticipation of both appetitive and aversive events.
    Metereau E; Dreher JC
    Cortex; 2015 Feb; 63():42-54. PubMed ID: 25243988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.
    Pickens CL; Saddoris MP; Setlow B; Gallagher M; Holland PC; Schoenbaum G
    J Neurosci; 2003 Dec; 23(35):11078-84. PubMed ID: 14657165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overt Attention toward Appetitive Cues Enhances Their Subjective Value, Independent of Orbitofrontal Cortex Activity.
    McGinty VB
    eNeuro; 2019; 6(6):. PubMed ID: 31554663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues.
    Burke KA; Takahashi YK; Correll J; Brown PL; Schoenbaum G
    Eur J Neurosci; 2009 Nov; 30(10):1941-6. PubMed ID: 19912335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug versus sweet reward: greater attraction to and preference for sweet versus drug cues.
    Madsen HB; Ahmed SH
    Addict Biol; 2015 May; 20(3):433-44. PubMed ID: 24602027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging.
    Roesch MR; Bryden DW; Cerri DH; Haney ZR; Schoenbaum G
    J Neurosci; 2012 Apr; 32(16):5525-33. PubMed ID: 22514314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifaceted Contributions by Different Regions of the Orbitofrontal and Medial Prefrontal Cortex to Probabilistic Reversal Learning.
    Dalton GL; Wang NY; Phillips AG; Floresco SB
    J Neurosci; 2016 Feb; 36(6):1996-2006. PubMed ID: 26865622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex.
    Cousens GA; Otto T
    Integr Physiol Behav Sci; 2003; 38(4):272-94. PubMed ID: 15119378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perseveration of craving: effects of stimuli conditioned to drugs of abuse versus conventional reinforcers differing in demand.
    Martin-Fardon R; Weiss F
    Addict Biol; 2017 Jul; 22(4):923-932. PubMed ID: 26864474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial orbitofrontal cortical regulation of different aspects of Pavlovian and instrumental reward seeking.
    Jenni NL; Symonds N; Floresco SB
    Psychopharmacology (Berl); 2023 Mar; 240(3):441-459. PubMed ID: 36322185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex.
    Tremblay L; Schultz W
    J Neurophysiol; 2000 Apr; 83(4):1864-76. PubMed ID: 10758098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.
    Saez RA; Saez A; Paton JJ; Lau B; Salzman CD
    Neuron; 2017 Jul; 95(1):70-77.e3. PubMed ID: 28683271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding predictive reward value in human amygdala and orbitofrontal cortex.
    Gottfried JA; O'Doherty J; Dolan RJ
    Science; 2003 Aug; 301(5636):1104-7. PubMed ID: 12934011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.