These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18563157)

  • 1. Micro-engineered local field control for high-sensitivity multispectral MRI.
    Zabow G; Dodd S; Moreland J; Koretsky A
    Nature; 2008 Jun; 453(7198):1058-63. PubMed ID: 18563157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medical imaging: Colourful future for MRI.
    Bowtell R
    Nature; 2008 Jun; 453(7198):993-4. PubMed ID: 18563140
    [No Abstract]   [Full Text] [Related]  

  • 3. Microfabricated multispectral MRI agents: a brief overview.
    Zabow G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4479-82. PubMed ID: 19964367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic iron oxide nanoparticles for biomedical applications.
    Laurent S; Bridot JL; Elst LV; Muller RN
    Future Med Chem; 2010 Mar; 2(3):427-49. PubMed ID: 21426176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia.
    Umut E; Coşkun M; Pineider F; Berti D; Güngüneş H
    J Colloid Interface Sci; 2019 Aug; 550():199-209. PubMed ID: 31075674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes.
    Zabow G; Dodd SJ; Koretsky AP
    Nature; 2015 Apr; 520(7545):73-7. PubMed ID: 25778701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear assemblies of magnetic nanoparticles as MRI contrast agents.
    Corr SA; Byrne SJ; Tekoriute R; Meledandri CJ; Brougham DF; Lynch M; Kerskens C; O'Dwyer L; Gun'ko YK
    J Am Chem Soc; 2008 Apr; 130(13):4214-5. PubMed ID: 18331033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetocaloric materials as switchable high contrast ratio MRI labels.
    Barbic M; Dodd SJ; Morris HD; Dilley N; Marcheschi B; Huston A; Harris TD; Koretsky AP
    Magn Reson Med; 2019 Apr; 81(4):2238-2246. PubMed ID: 30474159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging.
    Zhou Z; Yang L; Gao J; Chen X
    Adv Mater; 2019 Feb; 31(8):e1804567. PubMed ID: 30600553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved field free line magnetic particle imaging using saddle coils.
    Erbe M; Sattel TF; Buzug TM
    Biomed Tech (Berl); 2013 Dec; 58(6):577-82. PubMed ID: 23934634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabricated high-moment micrometer-sized MRI contrast agents.
    Zabow G; Dodd SJ; Shapiro E; Moreland J; Koretsky AP
    Magn Reson Med; 2011 Mar; 65(3):645-55. PubMed ID: 20928829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging concepts in molecular MRI.
    Sosnovik DE; Weissleder R
    Curr Opin Biotechnol; 2007 Feb; 18(1):4-10. PubMed ID: 17126545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner.
    Mathieu JB; Martel S
    Magn Reson Med; 2010 May; 63(5):1336-45. PubMed ID: 20432304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic particle imaging (MPI) for NMR and MRI researchers.
    Saritas EU; Goodwill PW; Croft LR; Konkle JJ; Lu K; Zheng B; Conolly SM
    J Magn Reson; 2013 Apr; 229():116-26. PubMed ID: 23305842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of particle shape and size on T2 relaxation in magnetic resonance imaging.
    York JN; Albanese C; Rodriguez O; Le YC; Ackun-Farmmer M; Van Keuren E
    J Biomed Nanotechnol; 2014 Nov; 10(11):3392-6. PubMed ID: 26000397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging.
    Liang Z; Wang Q; Liao H; Zhao M; Lee J; Yang C; Li F; Ling D
    Nat Commun; 2021 Jun; 12(1):3840. PubMed ID: 34158498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental study of ON-Resonance Saturation, an MRI sequence for positive contrast with superparamagnetic nanoparticles.
    Delangre S; Vuong QL; Henrard D; Magat J; Po C; Gallez B; Gossuin Y
    J Magn Reson; 2015 Mar; 252():151-62. PubMed ID: 25700117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis.
    Esmaeili E; Khalili M; Sohi AN; Hosseinzadeh S; Taheri B; Soleimani M
    J Cell Physiol; 2019 Aug; 234(8):12615-12624. PubMed ID: 30536886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic nanoparticle assisted molecular MR imaging.
    Jun YW; Jang JT; Cheon J
    Adv Exp Med Biol; 2007; 620():85-106. PubMed ID: 18217337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging based proton transverse relaxation rate measurements.
    Pardoe H; Chua-anusorn W; St Pierre TG; Dobson J
    Phys Med Biol; 2003 Mar; 48(6):N89-95. PubMed ID: 12699196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.