These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 18563599)

  • 1. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae.
    Kwolek-Mirek M; Bednarska S; Bartosz G; Biliński T
    Cell Biol Toxicol; 2009 Aug; 25(4):363-78. PubMed ID: 18563599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae.
    de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA
    Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants.
    Lewinska A; Bartosz G
    Free Radic Res; 2007 May; 41(5):580-90. PubMed ID: 17454141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae.
    Grzelak A; Macierzyńska E; Bartosz G
    Exp Gerontol; 2006 Sep; 41(9):813-8. PubMed ID: 16891074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite.
    Kwolek-Mirek M; Bartosz G; Spickett CM
    Yeast; 2011 Aug; 28(8):595-609. PubMed ID: 21761455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
    Bednarska S; Leroy P; Zagulski M; Bartosz G
    Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage.
    Sohn HY; Kwon CS; Kwon GS; Lee JB; Kim E
    Toxicol Lett; 2004 Jul; 151(2):357-65. PubMed ID: 15183460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants.
    Amari F; Fettouche A; Samra MA; Kefalas P; Kampranis SC; Makris AM
    J Agric Food Chem; 2008 Dec; 56(24):11740-51. PubMed ID: 19049288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K; Fischer BB; Rüfenacht K; Eggen RI
    Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for yeast glutaredoxin genes in selenite-mediated oxidative stress.
    Lewinska A; Bartosz G
    Fungal Genet Biol; 2008 Aug; 45(8):1182-7. PubMed ID: 18614384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [In vitro conjugation of allyl alcohol and of its metabolites with reduced glutathione].
    Dore M; Montaldo C
    Boll Soc Ital Biol Sper; 1984 Aug; 60(8):1497-501. PubMed ID: 6497983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.
    Kwolek-Mirek M; Zadrąg-Tęcza R; Bednarska S; Bartosz G
    Cell Biochem Biophys; 2015 Apr; 71(3):1525-36. PubMed ID: 25395196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine potentiation of allyl alcohol-induced hepatotoxicity. II. In vitro study.
    Karas M; Chakrabarti SK
    J Environ Pathol Toxicol Oncol; 2001; 20(2):155-64. PubMed ID: 11394714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state.
    Demasi AP; Pereira GA; Netto LE
    FEBS J; 2006 Feb; 273(4):805-16. PubMed ID: 16441666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong protein adduct trapping accompanies abolition of acrolein-mediated hepatotoxicity by hydralazine in mice.
    Kaminskas LM; Pyke SM; Burcham PC
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1003-10. PubMed ID: 15131244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL; Vanderweele DJ; Rudin CM
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.