These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 18563661)
1. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH Appl Biochem Biotechnol; 2006 Mar; 131(1-3):870-9. PubMed ID: 18563661 [TBL] [Abstract][Full Text] [Related]
2. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Yu JH; Lee DH; Oh YJ; Han KC; Ryu YW; Seo JH Appl Biochem Biotechnol; 2006; 129-132():870-9. PubMed ID: 16915695 [TBL] [Abstract][Full Text] [Related]
3. Controlling substrate concentration in fed-batch candida magnoliae culture increases mannitol production. Lee JK; Song JY; Kim SY Biotechnol Prog; 2003; 19(3):768-75. PubMed ID: 12790637 [TBL] [Abstract][Full Text] [Related]
4. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Kohl ES; Leet TH; Lee DY; Kim HJ; Ryu YW; Seo JH Biotechnol Lett; 2003 Dec; 25(24):2103-5. PubMed ID: 14969417 [TBL] [Abstract][Full Text] [Related]
5. Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation. Kim HJ; Lee HR; Kim CS; Jin YS; Seo JH Enzyme Microb Technol; 2013 Aug; 53(3):174-80. PubMed ID: 23830459 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of fructophilic properties of osmotolerant Candida magnoliae. Yu JH; Lee DH; Park YC; Lee MG; Kim DO; Ryu YW; Seo JH J Microbiol Biotechnol; 2008 Feb; 18(2):248-54. PubMed ID: 18309268 [TBL] [Abstract][Full Text] [Related]
7. Effect of oxygen transfer on glycerol biosynthesis by an osmophilic yeast Candida magnoliae I(2)B. Sahoo DK; Agarwal GP Biotechnol Bioeng; 2002 Jun; 78(5):545-55. PubMed ID: 12115124 [TBL] [Abstract][Full Text] [Related]
8. Role of glucose in the bioconversion of fructose into mannitol by Candida magnoliae. Baek H; Song KH; Park SM; Kim SY; Hyun HH Biotechnol Lett; 2003 May; 25(10):761-5. PubMed ID: 12882004 [TBL] [Abstract][Full Text] [Related]
9. Mannitol production from glycerol by resting cells of Candida magnoliae. Khan A; Bhide A; Gadre R Bioresour Technol; 2009 Oct; 100(20):4911-3. PubMed ID: 19467862 [TBL] [Abstract][Full Text] [Related]
10. Proteomics and physiology of erythritol-producing strains. Park YC; Lee DY; Lee DH; Kim HJ; Ryu YW; Seo JH J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):251-60. PubMed ID: 15652814 [TBL] [Abstract][Full Text] [Related]
11. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Tronchoni J; Gamero A; Arroyo-López FN; Barrio E; Querol A Int J Food Microbiol; 2009 Sep; 134(3):237-43. PubMed ID: 19632733 [TBL] [Abstract][Full Text] [Related]
12. [A new osmotolerant and glycerol-highly-producing species--Candida glycerolgenesis Zhuge sp. nov]. Wang Z; Zhuge J; Fang H Wei Sheng Wu Xue Bao; 1999 Feb; 39(1):68-74. PubMed ID: 12555405 [TBL] [Abstract][Full Text] [Related]
13. Erythritol production with minimum by-product using Candida magnoliae mutant. Ghezelbash GR; Nahvi I; Malekpour A Prikl Biokhim Mikrobiol; 2014; 50(3):324-8. PubMed ID: 25757342 [TBL] [Abstract][Full Text] [Related]
14. Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures. Zhang DS; Lovitt RW J Appl Microbiol; 2005; 99(3):565-72. PubMed ID: 16108798 [TBL] [Abstract][Full Text] [Related]
15. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae. Lebeau T; Jouenne T; Junter GA Microbiol Res; 2007; 162(3):211-8. PubMed ID: 16959480 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Lee DH; Lee YJ; Ryu YW; Seo JH Microb Cell Fact; 2010 Jun; 9():43. PubMed ID: 20529366 [TBL] [Abstract][Full Text] [Related]
17. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Jeya M; Lee KM; Tiwari MK; Kim JS; Gunasekaran P; Kim SY; Kim IW; Lee JK Appl Microbiol Biotechnol; 2009 May; 83(2):225-31. PubMed ID: 19169680 [TBL] [Abstract][Full Text] [Related]
18. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae. Park EH; Lee HY; Ryu YW; Seo JH; Kim MD J Microbiol Biotechnol; 2011 Oct; 21(10):1064-8. PubMed ID: 22031032 [TBL] [Abstract][Full Text] [Related]
19. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Sawada K; Taki A; Yamakawa T; Seki M J Biosci Bioeng; 2009 Nov; 108(5):385-90. PubMed ID: 19804861 [TBL] [Abstract][Full Text] [Related]
20. Cloning of the transketolase gene from erythritol-producing yeast Candida magnoliae. Yoo BH; Park EH; Seo JH; Kim MD J Microbiol Biotechnol; 2014 Oct; 24(10):1389-96. PubMed ID: 25394484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]