BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 18563751)

  • 1. Identification of protein components from the mature ovary of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea).
    Sewell MA; Eriksen S; Middleditch MJ
    Proteomics; 2008 Jun; 8(12):2531-42. PubMed ID: 18563751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterisation of SALMFamide neuropeptides in sea urchins.
    Elphick MR; Thorndyke MC
    J Exp Biol; 2005 Nov; 208(Pt 22):4273-82. PubMed ID: 16272250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.
    Livingston BT; Killian CE; Wilt F; Cameron A; Landrum MJ; Ermolaeva O; Sapojnikov V; Maglott DR; Buchanan AM; Ettensohn CA
    Dev Biol; 2006 Dec; 300(1):335-48. PubMed ID: 16987510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads.
    Garama D; Bremer P; Carne A
    Acta Biochim Pol; 2012; 59(1):83-5. PubMed ID: 22428140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a fasciclin I-like protein with cell attachment activity from sea urchin (Strongylocentrotus intermedius) ovaries.
    Sato K; Nishi N; Nomizu M
    Arch Biochem Biophys; 2004 Apr; 424(1):1-10. PubMed ID: 15019831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The S. purpuratus genome: a comparative perspective.
    Materna SC; Berney K; Cameron RA
    Dev Biol; 2006 Dec; 300(1):485-95. PubMed ID: 17056028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediary metabolism in sea urchin: the first inferences from the genome sequence.
    Goel M; Mushegian A
    Dev Biol; 2006 Dec; 300(1):282-92. PubMed ID: 16979151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RTK and TGF-beta signaling pathways genes in the sea urchin genome.
    Lapraz F; Röttinger E; Duboc V; Range R; Duloquin L; Walton K; Wu SY; Bradham C; Loza MA; Hibino T; Wilson K; Poustka A; McClay D; Angerer L; Gache C; Lepage T
    Dev Biol; 2006 Dec; 300(1):132-52. PubMed ID: 17084834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation.
    Roux MM; Townley IK; Raisch M; Reade A; Bradham C; Humphreys G; Gunaratne HJ; Killian CE; Moy G; Su YH; Ettensohn CA; Wilt F; Vacquier VD; Burke RD; Wessel G; Foltz KR
    Dev Biol; 2006 Dec; 300(1):416-33. PubMed ID: 17054939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcriptome of the NZ endemic sea urchin Kina (Evechinus chloroticus).
    Gillard GB; Garama DJ; Brown CM
    BMC Genomics; 2014 Jan; 15():45. PubMed ID: 24438054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sea urchin Forkhead gene family: phylogeny and embryonic expression.
    Tu Q; Brown CT; Davidson EH; Oliveri P
    Dev Biol; 2006 Dec; 300(1):49-62. PubMed ID: 17081512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.
    Pilbrow J; Sabherwal M; Garama D; Carne A
    PLoS One; 2014; 9(9):e106465. PubMed ID: 25192378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation.
    Roux MM; Radeke MJ; Goel M; Mushegian A; Foltz KR
    Dev Biol; 2008 Jan; 313(2):630-47. PubMed ID: 18082677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of holding live sea urchins (Evechinus chloroticus) in air prior to gonad removal on gonad adenine nucleotide profiles during storage at 4°C.
    Verachia W; Lazzarino G; Niven B; Bremer PJ
    Food Chem; 2013 Nov; 141(2):841-6. PubMed ID: 23790856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a major yolk protein as an allergen in sea urchin roe.
    Yamasaki A; Higaki H; Nakashima K; Yamamoto O; Hein KZ; Takahashi H; Chinuki Y; Morita E
    Acta Derm Venereol; 2010 May; 90(3):235-8. PubMed ID: 20526538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome.
    Raible F; Tessmar-Raible K; Arboleda E; Kaller T; Bork P; Arendt D; Arnone MI
    Dev Biol; 2006 Dec; 300(1):461-75. PubMed ID: 17067569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly variable immune-response proteins (185/333) from the sea urchin, Strongylocentrotus purpuratus: proteomic analysis identifies diversity within and between individuals.
    Dheilly NM; Nair SV; Smith LC; Raftos DA
    J Immunol; 2009 Feb; 182(4):2203-12. PubMed ID: 19201874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lineage-specific expansions provide genomic complexity among sea urchin GTPases.
    Beane WS; Voronina E; Wessel GM; McClay DR
    Dev Biol; 2006 Dec; 300(1):165-79. PubMed ID: 17014838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NGFFFamide and echinotocin: structurally unrelated myoactive neuropeptides derived from neurophysin-containing precursors in sea urchins.
    Elphick MR; Rowe ML
    J Exp Biol; 2009 Apr; 212(Pt 8):1067-77. PubMed ID: 19329739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of multiple Src family kinases in sea urchin eggs and their function in Ca2+ release at fertilization.
    Townley IK; Schuyler E; Parker-Gür M; Foltz KR
    Dev Biol; 2009 Mar; 327(2):465-77. PubMed ID: 19150445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.