These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18563874)

  • 1. Influence of structure on electron correlation effects and electron-water dispersion interactions in anionic water clusters.
    Williams CF; Herbert JM
    J Phys Chem A; 2008 Jul; 112(27):6171-8. PubMed ID: 18563874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron binding motifs of (H2O)n- clusters.
    Sommerfeld T; Jordan KD
    J Am Chem Soc; 2006 May; 128(17):5828-33. PubMed ID: 16637652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model potential approaches for describing the interaction of excess electrons with water clusters: incorporation of long-range correlation effects.
    Sommerfeld T; DeFusco A; Jordan KD
    J Phys Chem A; 2008 Nov; 112(44):11021-35. PubMed ID: 18959395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structures and electronic states of zinc-water clusters Zn(n)(H2O)(m) (n = 1-32 and m = 1-3).
    Tachikawa H; Iokibe K; Azumi K; Kawabata H
    Phys Chem Chem Phys; 2007 Aug; 9(30):3978-84. PubMed ID: 17646886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Kohn-Sham density of states and band gap of water: from small clusters to liquid water.
    Cabral do Couto P; Estácio SG; Costa Cabral BJ
    J Chem Phys; 2005 Aug; 123(5):054510. PubMed ID: 16108672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron solvation in water-ammonia mixed clusters: Structure, energetics, and the nature of localization states of the excess electron.
    Pratihar S; Chandra A
    J Chem Phys; 2007 Jun; 126(23):234510. PubMed ID: 17600428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the excess electron binding mechanism in the [CH(3)NO(2).(H(2)O)(n)](-) (n = 1-6) anion clusters.
    Motegi H; Takayanagi T; Tsuneda T; Yagi K; Nakanishi R; Nagata T
    J Phys Chem A; 2010 Sep; 114(34):8939-47. PubMed ID: 20681536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.
    Pathak AK; Mukherjee T; Maity DK
    J Chem Phys; 2007 Jul; 127(4):044304. PubMed ID: 17672687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of electron detachment energies for water cluster anions: an appraisal of electronic structure methods, with application to (H2O)20- AND (H2O)24-.
    Herbert JM; Head-Gordon M
    J Phys Chem A; 2005 Jun; 109(23):5217-29. PubMed ID: 16833879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the contribution of vibrational anharmonicity to the binding energies of water clusters.
    Diri K; Myshakin EM; Jordan KD
    J Phys Chem A; 2005 May; 109(17):4005-9. PubMed ID: 16833722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio studies on (H2O)14 - clusters: existence of surface and interior-bound extra electrons.
    Khan A
    J Chem Phys; 2006 Jul; 125(2):24307. PubMed ID: 16848584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemistry of water: the (H2O)5 cluster.
    Sobolewski AL; Domcke W
    J Chem Phys; 2005 May; 122(18):184320. PubMed ID: 15918717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic solvation of a lithium atom in water-ammonia mixed clusters: solvent coordination and electron localization in presence of a counterion.
    Pratihar S; Chandra A
    J Chem Phys; 2008 Jul; 129(2):024511. PubMed ID: 18624542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The static-exchange electron-water pseudopotential, in conjunction with a polarizable water model: a new Hamiltonian for hydrated-electron simulations.
    Jacobson LD; Williams CF; Herbert JM
    J Chem Phys; 2009 Mar; 130(12):124115. PubMed ID: 19334816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO(2) surface. I. Adsorption on the stoichiometric surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Aug; 127(8):084704. PubMed ID: 17764281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order Møller-Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory.
    Dahle P; Helgaker T; Jonsson D; Taylor PR
    Phys Chem Chem Phys; 2008 Jun; 10(23):3377-82. PubMed ID: 18535720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsolvation of the sodium and iodide ions and their ion pair in acetonitrile clusters: a theoretical study.
    Nguyen TN; Hughes SR; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):621-35. PubMed ID: 18183958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational studies of nonstoichiometric sodium auride clusters.
    Lin YC; Sundholm D
    J Phys Chem A; 2012 May; 116(21):5119-28. PubMed ID: 22571241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Undissociated versus dissociated structures for water clusters and ammonia-water clusters: (H2O)n and NH3(H2O)n-1 (n = 5, 8, 9, 21). Theoretical study.
    Karthikeyan S; Singh NJ; Kim KS
    J Phys Chem A; 2008 Jul; 112(29):6527-32. PubMed ID: 18578481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.