These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18563890)

  • 1. DFT research on the dehydroxylation reaction of pyrophyllite 2. Characterization of reactants, intermediates, and transition states along the reaction path.
    Molina-Montes E; Donadio D; Hernández-Laguna A; Sainz-Díaz CI
    J Phys Chem A; 2008 Jul; 112(28):6373-83. PubMed ID: 18563890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT research on the dehydroxylation reaction of pyrophyllite 1. First-principle molecular dynamics simulations.
    Molina-Montes E; Donadio D; Hernández-Laguna A; Sainz-Díaz CI; Parrinello M
    J Phys Chem B; 2008 Jun; 112(23):7051-60. PubMed ID: 18489137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the rehydroxylation reaction of pyrophyllite by ab initio molecular dynamics.
    Molina-Montes E; Donadio D; Hernández-Laguna A; Sainz-Díaz CI
    J Phys Chem B; 2010 Jun; 114(22):7593-601. PubMed ID: 20469939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.
    Kraka E; Cremer D
    Acc Chem Res; 2010 May; 43(5):591-601. PubMed ID: 20232791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rearrangement of Dewar benzene derivatives studied by DFT.
    Dracínský M; Castaño O; Kotora M; Bour P
    J Org Chem; 2010 Feb; 75(3):576-81. PubMed ID: 20073484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiclassical trajectory study of O(1D) + N2O --> NO + NO: classification of reaction paths and vibrational distribution.
    Kawai S; Fujimura Y; Kajimoto O; Yamashita T
    J Chem Phys; 2006 May; 124(18):184315. PubMed ID: 16709114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study.
    Basner JE; Schwartz SD
    J Am Chem Soc; 2005 Oct; 127(40):13822-31. PubMed ID: 16201803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metadynamics as a tool for exploring free energy landscapes of chemical reactions.
    Ensing B; De Vivo M; Liu Z; Moore P; Klein ML
    Acc Chem Res; 2006 Feb; 39(2):73-81. PubMed ID: 16489726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylate formation via metal-assisted C-C coupling between CO2 and C2H4: reaction mechanism as revealed from density functional calculations.
    Schubert G; Pápai I
    J Am Chem Soc; 2003 Dec; 125(48):14847-58. PubMed ID: 14640662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction path determination for quantum mechanical/molecular mechanical modeling of enzyme reactions by combining first order and second order "chain-of-replicas" methods.
    Cisneros GA; Liu H; Lu Z; Yang W
    J Chem Phys; 2005 Mar; 122(11):114502. PubMed ID: 15836224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new reaction path for the C + NO reaction: dynamics on the 4A'' potential-energy surface.
    Abrahamsson E; Andersson S; Marković N; Nyman G
    Phys Chem Chem Phys; 2008 Aug; 10(30):4400-9. PubMed ID: 18654679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrous oxide decomposition over Fe-ZSM-5 in the presence of nitric oxide: a comprehensive DFT study.
    Heyden A; Hansen N; Bell AT; Keil FJ
    J Phys Chem B; 2006 Aug; 110(34):17096-114. PubMed ID: 16928005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various reaction mechanisms.
    Stirling A; Iannuzzi M; Laio A; Parrinello M
    Chemphyschem; 2004 Oct; 5(10):1558-68. PubMed ID: 15535555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition state-finding strategies for use with the growing string method.
    Goodrow A; Bell AT; Head-Gordon M
    J Chem Phys; 2009 Jun; 130(24):244108. PubMed ID: 19566143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio and DFT studies of the thermal rearrangement of trimethylsilyl(methyl)silylene: remarkable rearrangements of silicon intermediates.
    Boo BH; Im S; Lee S
    J Comput Chem; 2010 Jan; 31(1):154-63. PubMed ID: 19425112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the H+O2 reaction by means of quantum mechanical and statistical approaches: the dynamics on two different potential energy surfaces.
    Bargueño P; González-Lezana T; Larrégaray P; Bonnet L; Rayez JC; Hankel M; Smith SC; Meijer AJ
    J Chem Phys; 2008 Jun; 128(24):244308. PubMed ID: 18601333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali metals (Li, Na, and K) in methyl phosphodiester hydrolysis.
    Pinjari RV; Kaptan SS; Gejji SP
    Phys Chem Chem Phys; 2009 Jul; 11(26):5253-62. PubMed ID: 19551192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evolution: mechanism of olefin insertion in hydroformylation reaction.
    Salinas-Olvera JP; Gómez RM; Cortés-Guzman F
    J Phys Chem A; 2008 Apr; 112(13):2906-12. PubMed ID: 18303875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unprejudiced identification of reaction mechanisms from biased transition path sampling.
    Zahn D
    J Chem Phys; 2005 Jul; 123(4):044104. PubMed ID: 16095343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.