BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18563924)

  • 1. Colander: a probability-based support vector machine algorithm for automatic screening for CID spectra of phosphopeptides prior to database search.
    Lu B; Ruse CI; Yates JR
    J Proteome Res; 2008 Aug; 7(8):3628-34. PubMed ID: 18563924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic validation of phosphopeptide identifications from tandem mass spectra.
    Lu B; Ruse C; Xu T; Park SK; Yates J
    Anal Chem; 2007 Feb; 79(4):1301-10. PubMed ID: 17297928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by microLC-ESI-Q-TOF MS/MS.
    Imanishi SY; Kochin V; Ferraris SE; de Thonel A; Pallari HM; Corthals GL; Eriksson JE
    Mol Cell Proteomics; 2007 Aug; 6(8):1380-91. PubMed ID: 17510049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome analysis.
    Payne SH; Yau M; Smolka MB; Tanner S; Zhou H; Bafna V
    J Proteome Res; 2008 Aug; 7(8):3373-81. PubMed ID: 18563926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic validation of phosphopeptide identifications by the MS2/MS3 target-decoy search strategy.
    Jiang X; Han G; Feng S; Jiang X; Ye M; Yao X; Zou H
    J Proteome Res; 2008 Apr; 7(4):1640-9. PubMed ID: 18314942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prophossi: automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry.
    Martin DM; Nett IR; Vandermoere F; Barber JD; Morrice NA; Ferguson MA
    Bioinformatics; 2010 Sep; 26(17):2153-9. PubMed ID: 20651112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhosphoScore: an open-source phosphorylation site assignment tool for MSn data.
    Ruttenberg BE; Pisitkun T; Knepper MA; Hoffert JD
    J Proteome Res; 2008 Jul; 7(7):3054-9. PubMed ID: 18543960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry.
    Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment Mass Spectrum Prediction Facilitates Site Localization of Phosphorylation.
    Yang Y; Horvatovich P; Qiao L
    J Proteome Res; 2021 Jan; 20(1):634-644. PubMed ID: 32985198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deephos: predicted spectral database search for TMT-labeled phosphopeptides and its false discovery rate estimation.
    Na S; Choi H; Paek E
    Bioinformatics; 2022 May; 38(11):2980-2987. PubMed ID: 35441674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical MS2/MS3 database search algorithm for automated analysis of phosphopeptide tandem mass spectra.
    Xu H; Wang L; Sallans L; Freitas MA
    Proteomics; 2009 Apr; 9(7):1763-70. PubMed ID: 19288523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of errors in tandem mass spectrum extraction enhances phosphopeptide identification.
    Hao P; Ren Y; Tam JP; Sze SK
    J Proteome Res; 2013 Dec; 12(12):5548-57. PubMed ID: 24147958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of manual validation for the identification of phosphopeptides using a linear ion trap mass spectrometer.
    Goldstrohm DA; Broeckling CD; Prenni JE; Curthoys NP
    J Biomol Tech; 2011 Apr; 22(1):10-20. PubMed ID: 21455477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of high-accuracy precursor masses on phosphopeptide identification from MS3 spectra.
    Timm W; Ozlu N; Steen JJ; Steen H
    Anal Chem; 2010 May; 82(10):3977-80. PubMed ID: 20426395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated phosphopeptide identification using multiple MS/MS fragmentation modes.
    Vandenbogaert M; Hourdel V; Jardin-Mathé O; Bigeard J; Bonhomme L; Legros V; Hirt H; Schwikowski B; Pflieger D
    J Proteome Res; 2012 Dec; 11(12):5695-703. PubMed ID: 23094866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhosTShunter: a fast and reliable tool to detect phosphorylated peptides in liquid chromatography Fourier transform tandem mass spectrometry data sets.
    Köcher T; Savitski MM; Nielsen ML; Zubarev RA
    J Proteome Res; 2006 Mar; 5(3):659-68. PubMed ID: 16512682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated platform of μLC-MS/MS using SAX trap column for highly efficient phosphopeptide analysis.
    Sun X; Jiang X
    Anal Bioanal Chem; 2017 Mar; 409(9):2489-2493. PubMed ID: 28138740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis.
    Wu HY; Tseng VS; Liao PC
    J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhoStar: Identifying Tandem Mass Spectra of Phosphorylated Peptides before Database Search.
    Dorl S; Winkler S; Mechtler K; Dorfer V
    J Proteome Res; 2018 Jan; 17(1):290-295. PubMed ID: 29057658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.