These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18563942)

  • 1. Graphene oxidation: thickness-dependent etching and strong chemical doping.
    Liu L; Ryu S; Tomasik MR; Stolyarova E; Jung N; Hybertsen MS; Steigerwald ML; Brus LE; Flynn GW
    Nano Lett; 2008 Jul; 8(7):1965-70. PubMed ID: 18563942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic etching of monolayer graphene at low temperature via carbon oxidation.
    Jin JE; Lee JH; Choi JH; Jang HK; Na J; Whang D; Kim DH; Kim GT
    Phys Chem Chem Phys; 2016 Jan; 18(1):101-9. PubMed ID: 26225821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability.
    Zhao W; Tan PH; Liu J; Ferrari AC
    J Am Chem Soc; 2011 Apr; 133(15):5941-6. PubMed ID: 21434632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.
    Bazylewski PF; Nguyen VL; Bauer RP; Hunt AH; McDermott EJ; Leedahl BD; Kukharenko AI; Cholakh SO; Kurmaev EZ; Blaha P; Moewes A; Lee YH; Chang GS
    Sci Rep; 2015 Oct; 5():15380. PubMed ID: 26486966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong charge-transfer doping of 1 to 10 layer graphene by NO₂.
    Crowther AC; Ghassaei A; Jung N; Brus LE
    ACS Nano; 2012 Feb; 6(2):1865-75. PubMed ID: 22276666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics.
    Kim KS; Ji YJ; Nam Y; Kim KH; Singh E; Lee JY; Yeom GY
    Sci Rep; 2017 May; 7(1):2462. PubMed ID: 28550291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of soluble graphite and graphene.
    Kelly KF; Billups WE
    Acc Chem Res; 2013 Jan; 46(1):4-13. PubMed ID: 23116420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.
    Ebrish MA; Olson EJ; Koester SJ
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10296-303. PubMed ID: 24896230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite.
    Jang W; Chen Z; Bao W; Lau CN; Dames C
    Nano Lett; 2010 Oct; 10(10):3909-13. PubMed ID: 20836537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly Hole-Doped and Highly Decoupled Graphene on Platinum by Water Intercalation.
    Li Z; Li S; Chen HT; Gao N; Schouteden K; Qiang X; Zhao J; Brems S; Huyghebaert C; Van Haesendonck C
    J Phys Chem Lett; 2019 Jul; 10(14):3998-4002. PubMed ID: 31260314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable nanomanufacturing of holey graphene
    Bi K; Wang D; Dai R; Liu L; Wang Y; Lu Y; Liao Y; Ding L; Zhuang H; Nian Q
    Nanoscale; 2022 Mar; 14(12):4762-4769. PubMed ID: 35275145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene.
    Jia X; Hu M; Soundarapandian K; Yu X; Liu Z; Chen Z; Narita A; Müllen K; Koppens FHL; Jiang J; Tielrooij KJ; Bonn M; Wang HI
    Nano Lett; 2019 Dec; 19(12):9029-9036. PubMed ID: 31742413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale imaging of freestanding nitrogen doped single layer graphene.
    Iyer GR; Wang J; Wells G; Bradley MP; Borondics F
    Nanoscale; 2015 Feb; 7(6):2289-94. PubMed ID: 25584935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-gated charge doping of graphene induced by mica substrates.
    Shim J; Lui CH; Ko TY; Yu YJ; Kim P; Heinz TF; Ryu S
    Nano Lett; 2012 Feb; 12(2):648-54. PubMed ID: 22260483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
    Kim S; Jung S; Lee J; Kim S; Fedorov AG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39595-39601. PubMed ID: 32805878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two dimensional soft material: new faces of graphene oxide.
    Kim J; Cote LJ; Huang J
    Acc Chem Res; 2012 Aug; 45(8):1356-64. PubMed ID: 22663082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and selected properties of graphene and graphene mimics.
    Rao CN; Matte HS; Subrahmanyam KS
    Acc Chem Res; 2013 Jan; 46(1):149-59. PubMed ID: 22738406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme monolayer-selectivity of hydrogen-plasma reactions with graphene.
    Diankov G; Neumann M; Goldhaber-Gordon D
    ACS Nano; 2013 Feb; 7(2):1324-32. PubMed ID: 23327591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.