These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18563967)

  • 1. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.
    Chin CS; Chubukov V; Jolly ER; DeRisi J; Li H
    PLoS Biol; 2008 Jun; 6(6):e146. PubMed ID: 18563967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory architecture determines optimal regulation of gene expression in metabolic pathways.
    Chubukov V; Zuleta IA; Li H
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):5127-32. PubMed ID: 22416120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal metabolic regulation using a constraint-based model.
    Riehl WJ; Segrè D
    Genome Inform; 2008; 20():159-70. PubMed ID: 19425131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1.
    Temme K; Salis H; Tullman-Ercek D; Levskaya A; Hong SH; Voigt CA
    J Mol Biol; 2008 Mar; 377(1):47-61. PubMed ID: 18242639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using dynamic sensitivities to characterize metabolic reaction systems.
    Sriyudthsak K; Uno H; Gunawan R; Shiraishi F
    Math Biosci; 2015 Nov; 269():153-63. PubMed ID: 26384553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolite Sequestration Enables Rapid Recovery from Fatty Acid Depletion in Escherichia coli.
    Hartline CJ; Mannan AA; Liu D; Zhang F; Oyarzún DA
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of yeast LEU2. Total deletion of regulatory gene LEU3 unmasks GCN4-dependent basal level expression of LEU2.
    Brisco PR; Kohlhaw GB
    J Biol Chem; 1990 Jul; 265(20):11667-75. PubMed ID: 2195025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic optimization of metabolic networks coupled with gene expression.
    Waldherr S; Oyarzún DA; Bockmayr A
    J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism.
    Ewald J; Bartl M; Dandekar T; Kaleta C
    PLoS Comput Biol; 2017 Feb; 13(2):e1005371. PubMed ID: 28212377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shedding light on the methylerythritol phosphate (MEP)-pathway: long hypocotyl 5 (HY5)/phytochrome-interacting factors (PIFs) transcription factors modulating key limiting steps.
    Chenge-Espinosa M; Cordoba E; Romero-Guido C; Toledo-Ortiz G; León P
    Plant J; 2018 Nov; 96(4):828-841. PubMed ID: 30144333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida.
    Colón AM; Sengupta N; Rhodes D; Dudareva N; Morgan J
    Plant J; 2010 Apr; 62(1):64-76. PubMed ID: 20070567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating and inhibiting connections in biological network dynamics.
    McDonald D; Waterbury L; Knight R; Betterton MD
    Biol Direct; 2008 Dec; 3():49. PubMed ID: 19055800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic fluctuations in metabolic pathways.
    Levine E; Hwa T
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9224-9. PubMed ID: 17517669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic constraints on the regulation of metabolic fluxes.
    Dai Z; Locasale JW
    J Biol Chem; 2018 Dec; 293(51):19725-19739. PubMed ID: 30361440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
    Baldazzi V; Ropers D; Geiselmann J; Kahn D; de Jong H
    J Theor Biol; 2012 Feb; 295():100-15. PubMed ID: 22138386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in
    Kerkhoven EJ; Kim YM; Wei S; Nicora CD; Fillmore TL; Purvine SO; Webb-Robertson BJ; Smith RD; Baker SE; Metz TO; Nielsen J
    mBio; 2017 Jun; 8(3):. PubMed ID: 28634240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory crosstalk of the metabolic network.
    Grüning NM; Lehrach H; Ralser M
    Trends Biochem Sci; 2010 Apr; 35(4):220-7. PubMed ID: 20060301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based design of bistable cell factories for metabolic engineering.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2018 Apr; 34(8):1363-1371. PubMed ID: 29220508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism.
    Mentzen WI; Peng J; Ransom N; Nikolau BJ; Wurtele ES
    BMC Plant Biol; 2008 Jul; 8():76. PubMed ID: 18616834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans.
    Peterson JR; Thor S; Kohler L; Kohler PR; Metcalf WW; Luthey-Schulten Z
    BMC Genomics; 2016 Nov; 17(1):924. PubMed ID: 27852217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.