BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18564091)

  • 1. Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France.
    Prospero S; Lung-Escarmant B; Dutech C
    Mol Ecol; 2008 Jul; 17(14):3366-78. PubMed ID: 18564091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests.
    Bendel M; Kienast F; Rigling D
    Mycol Res; 2006 Jun; 110(Pt 6):705-12. PubMed ID: 16616839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers.
    Dutech C; Labbé F; Capdevielle X; Lung-Escarmant B
    Fungal Biol; 2017; 121(6-7):550-560. PubMed ID: 28606350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic differentiation of the pine wilt disease vector Monochamus alternatus (Coleoptera: Cerambycidae) over a mountain range - revealed from microsatellite DNA markers.
    Shoda-Kagaya E
    Bull Entomol Res; 2007 Apr; 97(2):167-74. PubMed ID: 17411479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting patterns of genetic diversity and population structure of Armillaria mellea sensu stricto in the eastern and western United States.
    Baumgartner K; Travadon R; Bruhn J; Bergemann SE
    Phytopathology; 2010 Jul; 100(7):708-18. PubMed ID: 20528189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic signatures of variation in population size in a native fungal pathogen after the recent massive plantation of its host tree.
    Labbé F; Fontaine MC; Robin C; Dutech C
    Heredity (Edinb); 2017 Dec; 119(6):402-410. PubMed ID: 28930289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae.
    Heinzelmann R; Croll D; Zoller S; Sipos G; Münsterkötter M; Güldener U; Rigling D
    Fungal Genet Biol; 2017 Nov; 108():44-54. PubMed ID: 28860084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population genetics of the wood-rotting basidiomycete Armillaria cepistipes in a fragmented forest landscape.
    Heinzelmann R; Rigling D; Prospero S
    Fungal Biol; 2012 Sep; 116(9):985-94. PubMed ID: 22954341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers.
    Bucci G; González-Martínez SC; Le Provost G; Plomion C; Ribeiro MM; Sebastiani F; Alía R; Vendramin GG
    Mol Ecol; 2007 May; 16(10):2137-53. PubMed ID: 17498237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and Spatial Dynamics of Primary and Secondary Infection by Armillaria ostoyae in a Pinus pinaster Plantation.
    Lung-Escarmant B; Guyon D
    Phytopathology; 2004 Feb; 94(2):125-31. PubMed ID: 18943534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration patterns of the emerging plant pathogen Phytophthora ramorum on the West Coast of the United States of America.
    Prospero S; Grünwald NJ; Winton LM; Hansen EM
    Phytopathology; 2009 Jun; 99(6):739-49. PubMed ID: 19453234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of genets of Armillaria spp. in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae.
    Legrand P; Ghahari S; Guillaumin JJ
    New Phytol; 1996 Jun; 133(2):321-332. PubMed ID: 29681066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary resource capture in two sympatric Armillaria species in managed Norway spruce forests.
    Prospero S; Holdenrieder O; Rigling D
    Mycol Res; 2003 Mar; 107(Pt 3):329-38. PubMed ID: 12825502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle.
    Tsui CK; Roe AD; El-Kassaby YA; Rice AV; Alamouti SM; Sperling FA; Cooke JE; Bohlmann J; Hamelin RC
    Mol Ecol; 2012 Jan; 21(1):71-86. PubMed ID: 22118059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No evidence of population structure across three isolated subpopulations of Russula brevipes in an oak/pine woodland.
    Bergemann SE; Douhan GW; Garbelotto M; Miller SL
    New Phytol; 2006; 170(1):177-84. PubMed ID: 16539614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and population genetic structure of microsatellites in white pine.
    Marquardt PE; Epperson BK
    Mol Ecol; 2004 Nov; 13(11):3305-15. PubMed ID: 15487991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution and genetic structure of Cenococcum geophilum in coastal pine forests in Japan.
    Matsuda Y; Takeuchi K; Obase K; Ito S
    FEMS Microbiol Ecol; 2015 Oct; 91(10):. PubMed ID: 26347080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A signal for independent coastal and continental histories among North American wolves.
    Weckworth BV; Talbot S; Sage GK; Person DK; Cook J
    Mol Ecol; 2005 Apr; 14(4):917-31. PubMed ID: 15773925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population dynamics of the sudden oak death pathogen Phytophthora ramorum in Oregon from 2001 to 2004.
    Prospero S; Hansen EM; Grünwald NJ; Winton LM
    Mol Ecol; 2007 Jul; 16(14):2958-73. PubMed ID: 17614910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine.
    Hurel A; de Miguel M; Dutech C; Desprez-Loustau ML; Plomion C; Rodríguez-Quilón I; Cyrille A; Guzman T; Alía R; González-Martínez SC; Budde KB
    Evol Appl; 2021 Dec; 14(12):2750-2772. PubMed ID: 34950227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.