BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 18564993)

  • 1. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects.
    Shipp A; Lawrence G; Gentry R; McDonald T; Bartow H; Bounds J; Macdonald N; Clewell H; Allen B; Van Landingham C
    Crit Rev Toxicol; 2006; 36(6-7):481-608. PubMed ID: 16973444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of in vivo mutation data can inform cancer risk assessment.
    Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose.
    Gaylor DW; Swirsky Gold L
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide.
    McCarroll N; Keshava N; Cimino M; Chu M; Dearfield K; Keshava C; Kligerman A; Owen R; Protzel A; Putzrath R; Schoeny R
    Environ Mol Mutagen; 2008 Mar; 49(2):117-31. PubMed ID: 18240158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive approach for integration of toxicity and cancer risk assessments.
    Butterworth BE; Bogdanffy MS
    Regul Toxicol Pharmacol; 1999 Feb; 29(1):23-36. PubMed ID: 10051416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formaldehyde and glutaraldehyde and nasal cytotoxicity: case study within the context of the 2006 IPCS Human Framework for the Analysis of a cancer mode of action for humans.
    McGregor D; Bolt H; Cogliano V; Richter-Reichhelm HB
    Crit Rev Toxicol; 2006; 36(10):821-35. PubMed ID: 17118731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism, variability and risk assessment.
    Dorne JL
    Toxicology; 2010 Feb; 268(3):156-64. PubMed ID: 19932147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A classification framework and practical guidance for establishing a mode of action for chemical carcinogens.
    Butterworth BE
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):9-23. PubMed ID: 16530901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.
    Kitchin KT; Conolly R
    Chem Res Toxicol; 2010 Feb; 23(2):327-35. PubMed ID: 20035570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening-level population risk assessment of nasal tumors in the US due to naphthalene exposure.
    Magee B; Samuelian J; Haines K; Chappel M; Penn I; Chin D; Anders D; Hinz J
    Regul Toxicol Pharmacol; 2010; 57(2-3):168-80. PubMed ID: 20156512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human carcinogenic risk evaluation, part II: contributions of the EUROTOX specialty section for carcinogenesis.
    Bolt HM; Degen GH
    Toxicol Sci; 2004 Sep; 81(1):3-6. PubMed ID: 15159528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for establishing mode of action of chemical carcinogens as a guide for approaches to risk assessments.
    Butterworth BE; Conolly RB; Morgan KT
    Cancer Lett; 1995 Jun; 93(1):129-46. PubMed ID: 7600540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naphthalene animal carcinogenicity and human relevancy: overview of industries with naphthalene-containing streams.
    Jeffrey Lewis R
    Regul Toxicol Pharmacol; 2012 Feb; 62(1):131-7. PubMed ID: 22197623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches to cancer assessment in EPA's Integrated Risk Information System.
    Gehlhaus MW; Gift JS; Hogan KA; Kopylev L; Schlosser PM; Kadry AR
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):170-80. PubMed ID: 21034767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of action in relevance of rodent liver tumors to human cancer risk.
    Holsapple MP; Pitot HC; Cohen SM; Boobis AR; Klaunig JE; Pastoor T; Dellarco VL; Dragan YP
    Toxicol Sci; 2006 Jan; 89(1):51-6. PubMed ID: 16221960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence.
    Luke NS; Sams R; DeVito MJ; Conolly RB; El-Masri HA
    Toxicol Sci; 2010 May; 115(1):253-66. PubMed ID: 20106946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.