BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18565145)

  • 1. Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus).
    McCully ME; Miller C; Sprague SJ; Huang CX; Kirkegaard JA
    New Phytol; 2008; 180(1):193-205. PubMed ID: 18565145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli.
    Omirou MD; Papadopoulou KK; Papastylianou I; Constantinou M; Karpouzas DG; Asimakopoulos I; Ehaliotis C
    J Agric Food Chem; 2009 Oct; 57(20):9408-17. PubMed ID: 19791742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosinolates in collard greens grown under three soil management practices.
    Antonious GF
    J Environ Sci Health B; 2015; 50(5):368-73. PubMed ID: 25826105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.
    Bhandari SR; Jo JS; Lee JG
    Molecules; 2015 Aug; 20(9):15827-41. PubMed ID: 26334264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds.
    Borgen BH; Thangstad OP; Ahuja I; Rossiter JT; Bones AM
    J Exp Bot; 2010 Jun; 61(6):1683-97. PubMed ID: 20219777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of glucosinolate production in hairy roots of green and red kale (
    Cuong DM; Park SU; Park CH; Kim NS; Bong SJ; Lee SY
    Prep Biochem Biotechnol; 2019; 49(8):775-782. PubMed ID: 31124740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of supplemental LED light quality and reduced growth temperature on swede (Brassica napus L. ssp. rapifera Metzg.) root vegetable development and contents of glucosinolates and sugars.
    Mølmann JA; Hansen E; Johansen TJ
    J Sci Food Agric; 2021 Apr; 101(6):2422-2427. PubMed ID: 33011991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic architecture of glucosinolate variation in Brassica napus.
    Kittipol V; He Z; Wang L; Doheny-Adams T; Langer S; Bancroft I
    J Plant Physiol; 2019 Sep; 240():152988. PubMed ID: 31255878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus.
    Andréasson E; Bolt Jørgensen L; Höglund AS; Rask L; Meijer J
    Plant Physiol; 2001 Dec; 127(4):1750-63. PubMed ID: 11743118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway.
    Auger B; Pouvreau JB; Pouponneau K; Yoneyama K; Montiel G; Le Bizec B; Yoneyama K; Delavault P; Delourme R; Simier P
    Mol Plant Microbe Interact; 2012 Jul; 25(7):993-1004. PubMed ID: 22414435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots.
    Tong Y; Gabriel-Neumann E; Ngwene B; Krumbein A; George E; Platz S; Rohn S; Schreiner M
    Food Chem; 2014; 152():190-6. PubMed ID: 24444925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently.
    Lippmann D; Lehmann C; Florian S; Barknowitz G; Haack M; Mewis I; Wiesner M; Schreiner M; Glatt H; Brigelius-Flohé R; Kipp AP
    Food Funct; 2014 Jun; 5(6):1073-81. PubMed ID: 24714741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism.
    Hsu FC; Wirtz M; Heppel SC; Bogs J; Krämer U; Khan MS; Bub A; Hell R; Rausch T
    Plant Cell Environ; 2011 Feb; 34(2):192-207. PubMed ID: 20880203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).
    Mølmann JA; Hagen SF; Bengtsson GB; Johansen TJ
    J Sci Food Agric; 2018 Feb; 98(3):1117-1123. PubMed ID: 28732144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.).
    Johansen TJ; Hagen SF; Bengtsson GB; Mølmann JA
    Food Chem; 2016 Apr; 196():228-35. PubMed ID: 26593487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening Brassica species for glucosinolate content.
    Antonious GF; Bomford M; Vincelli P
    J Environ Sci Health B; 2009 Mar; 44(3):311-6. PubMed ID: 19280485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply.
    Li S; Schonhof I; Krumbein A; Li L; Stützel H; Schreiner M
    J Agric Food Chem; 2007 Oct; 55(21):8452-7. PubMed ID: 17854152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content.
    Yang Y; Hu Y; Yue Y; Pu Y; Yin X; Duan Y; Huang A; Yang Y; Yang Y
    J Sci Food Agric; 2020 Feb; 100(3):1064-1071. PubMed ID: 31713870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study.
    Liu S; Huang H; Yi X; Zhang Y; Yang Q; Zhang C; Fan C; Zhou Y
    Plant Biotechnol J; 2020 Jun; 18(6):1472-1484. PubMed ID: 31820843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy.
    Font R; del Río-Celestino M; Cartea E; de Haro-Bailón A
    Phytochemistry; 2005 Jan; 66(2):175-85. PubMed ID: 15652574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.