These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1126 related articles for article (PubMed ID: 18565343)
1. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. Meyer S; Scrima A; Versées W; Wittinghofer A J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343 [TBL] [Abstract][Full Text] [Related]
2. Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli. Yim L; Moukadiri I; Björk GR; Armengod ME Nucleic Acids Res; 2006; 34(20):5892-905. PubMed ID: 17062623 [TBL] [Abstract][Full Text] [Related]
3. G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex. Meyer S; Wittinghofer A; Versées W J Mol Biol; 2009 Oct; 392(4):910-22. PubMed ID: 19591841 [TBL] [Abstract][Full Text] [Related]
4. Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon. Osawa T; Ito K; Inanaga H; Nureki O; Tomita K; Numata T Structure; 2009 May; 17(5):713-24. PubMed ID: 19446527 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
6. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
7. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732 [TBL] [Abstract][Full Text] [Related]
8. Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA. Roovers M; Oudjama Y; Kaminska KH; Purta E; Caillet J; Droogmans L; Bujnicki JM Proteins; 2008 Jun; 71(4):2076-85. PubMed ID: 18186482 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Harris SF; Shiau AK; Agard DA Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928 [TBL] [Abstract][Full Text] [Related]
10. Structure-function analysis of Escherichia coli MnmG (GidA), a highly conserved tRNA-modifying enzyme. Shi R; Villarroya M; Ruiz-Partida R; Li Y; Proteau A; Prado S; Moukadiri I; Benítez-Páez A; Lomas R; Wagner J; Matte A; Velázquez-Campoy A; Armengod ME; Cygler M J Bacteriol; 2009 Dec; 191(24):7614-9. PubMed ID: 19801413 [TBL] [Abstract][Full Text] [Related]
11. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation. Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of G domain conformations in the tRNA-modifying MnmE-GidA complex observed with double electron electron resonance spectroscopy. Böhme S; Meyer S; Krüger A; Steinhoff HJ; Wittinghofer A; Klare JP J Biol Chem; 2010 May; 285(22):16991-7000. PubMed ID: 20353943 [TBL] [Abstract][Full Text] [Related]
14. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. McGuire AT; Keates RA; Cook S; Mangroo D Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain. Waterman DG; Ortiz-Lombardía M; Fogg MJ; Koonin EV; Antson AA J Mol Biol; 2006 Feb; 356(1):97-110. PubMed ID: 16343540 [TBL] [Abstract][Full Text] [Related]
16. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438 [TBL] [Abstract][Full Text] [Related]
17. Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Moukadiri I; Prado S; Piera J; Velázquez-Campoy A; Björk GR; Armengod ME Nucleic Acids Res; 2009 Nov; 37(21):7177-93. PubMed ID: 19767610 [TBL] [Abstract][Full Text] [Related]
18. The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity. Ilari A; Bonamore A; Franceschini S; Fiorillo A; Boffi A; Colotti G Proteins; 2008 Jun; 71(4):2065-75. PubMed ID: 18186483 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. Kim IK; Yim HS; Kim MK; Kim DW; Kim YM; Cha SS; Kang SO J Mol Biol; 2008 May; 379(2):372-84. PubMed ID: 18455185 [TBL] [Abstract][Full Text] [Related]
20. X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold. Ericsson UB; Nordlund P; Hallberg BM FEBS Lett; 2004 May; 565(1-3):59-64. PubMed ID: 15135053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]